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ABSTRACT
The low-temperature quasi-universal behavior of amorphous solids has been attributed to the existence of spatially localized tunneling defects
found in the low-energy regions of the potential energy landscape. Computational models of glasses can be studied to elucidate the micro-
scopic nature of these defects. Recent simulation work has demonstrated the means of generating stable glassy configurations for models that
mimic metallic glasses using the swap Monte Carlo algorithm. Building on these studies, we present an extensive exploration of the glassy
metabasins of the potential energy landscape of a variant of the most widely used model of metallic glasses. We carefully identify tunnel-
ing defects and reveal their depletion with increased glass stability. The density of tunneling defects near the experimental glass transition
temperature appears to be in good agreement with experimental measurements.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0128820

I. INTRODUCTION

The mechanical and thermal properties of glassy systems at
cryogenic temperatures are determined by their low-energy exci-
tations. In particular, at temperatures below 1 K, where quantum
effects are important, the model of tunneling two-level systems
(TLSs)1,2 and its extensions3 has proven to be remarkably success-
ful in the prediction of the linear dependence in temperature T of
the specific heat, the T2 dependence of the thermal conductivity,4,5

and the plateau in ultrasonic sound attenuation.6,7 Despite its suc-
cess, alternative explanations for these experimental observations
have been proposed.8,9 In particular, the interactions between TLS,10

aspects related to the scattering of phonons by TLS,11–14 and the
collective TLS dynamics15 remain the subject of debate.16 Compu-
tational models can, in principle, be used to establish the relative
merits and the ultimate validity of different hypotheses.17–22

Beyond answering fundamental questions about the glassy
state, the existence and nature of low-energy excitations in non-
crystalline solids are of significant practical interest as well. In the
case of superconducting circuits used for quantum computation,
the tunneling TLS present in the amorphous dielectric layers of
these devices is thought to be a major source of noise and decoher-
ence.23 Similarly, the relationship of TLS defects to internal friction
is an important factor for reducing the optical losses in the coat-
ings used for glass mirrors that are part of the complex assemblies of
gravitational wave detectors.24,25

A particularly important question is what controls the den-
sity of TLS, which, in turn, determines the thermal and transport
properties of the glass. Previous work has identified the fictive tem-
perature (Tf ), which is “the temperature at which the glass sample
would find itself in equilibrium if suddenly brought there from a
given state”26 and thus efficiently encodes the thermal history of the
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glass, its stability, and position in the potential energy landscape,
as a crucial determinant of the TLS density. In fact, a reduction of
roughly two orders of magnitude was observed in experiments on
evaporated silicon thin films,27 on vapor-deposited indomethacin,28

and in numerical simulations of polydisperse soft-spheres (PSSs),21

where Tf was decreased from above (hyperquenched glass) to below
(ultrastable glass) the experimental glass transition temperature Tg .

However, the numerical results for continuously polydisperse
systems21 indicate a TLS density significantly larger than experi-
ments, which suggests that other parameters might be relevant in its
determination. Here, we address this question by taking advantage
of a recent extension of the swap Monte Carlo (MC) algorithm29,30 to
computer models of metallic glasses,31 which feature both a reduced
polydispersity and more realistic attractive interactions. We find the
same reduction of the TLS density as a function of Tf as in previous
work. In addition, we find an overall depletion with respect to previ-
ous simulations of highly polydisperse soft spheres. Our work thus
suggests that the use of a more realistic yet relatively simple model is
sufficient to bring down the absolute density of TLS, in closer agree-
ment with experimental measurements of typical materials.2,32 The
TLS density is not a strongly universal quantity, being determined
by both the microscopic parameters of the interaction potentials
and the thermal history of the specific glass sample. Physically,
our results confirm that increasing the glass stability considerably
decreases the density of TLS, thus leading to an expected decrease in
dissipation in amorphous solids at low temperatures and a concomi-
tant improvement in the material attributes associated with a variety
of practical applications.

Finally, we revisit previous numerical protocols for TLS deter-
mination21 and provide a detailed insight on how the measured
density of TLS depends on the exploration protocol and on the
properties of energy minima and barriers inside glass metabasins.
Finally, we investigate the glass vibrational modes in order to analyze
the low-frequency quasi-localized modes (QLMs) found at the har-
monic level. We find a weak correlation between the density of QLM
and TLS, distinct from the proportionality suggested recently.33 Our
results emphasize the diversity of low-energy excitations governing
the behavior of glasses at low and cryogenic temperatures.

Our article is organized as follows. In Sec. II, we present the
numerical tools used to isolate and observe TLS. In Sec. III, we
describe the results of the potential energy landscape exploration.
In Sec. IV, we characterize the statistical properties of the TLSs and
their temperature evolution. We discuss our results in Sec. V.

II. NUMERICAL METHODS
A. General strategy

Our ultimate goal is to numerically detect and characterize
TLSs in a model metallic glass and investigate how their number
and properties evolve with glass preparation. In experiments, TLSs
are naturally excited at low temperature where quantum effects
become relevant. However, simulating the quantum dynamics of
glasses containing thousands of particles at very low temperature is
prohibitively difficult, and one should find alternative approaches to
identify TLSs.

Our aim is, therefore, to estimate n(E), i.e., the number of
tunneling double-well (DW) potentials (transition paths connect-
ing distinct potential energy minima) with the associated quantum

splitting smaller than E, counted per atom and per glass sample. The
TLS model1,2 postulates the small-E scaling,

n(E) ≃ n0E +O(E2). (1)

The plateau value n0 reached by n(E)/E at small E allows one to
estimate nTLS, the number of active TLSs per atom in a typical
glass sample at temperature TQ where experiments are performed,
typically around 1 K,

nTLS = n0kBTQ. (2)

The quantity nTLS deduced from n(E) from Eqs. (1) and (2) is the
key factor controlling physical properties at low temperatures.

We provide a brief summary of our numerical strategy to mea-
sure n(E) for glasses characterized by various fictive temperatures,
while more detailed explanations and analysis will be presented in
Sec. II-IV. There are four important steps:

1. Prepare glass samples of various degrees of stability or fic-
tive temperatures. To do so, we generate N g independent
equilibrium configurations in the supercooled liquid phase at
different temperatures Tf ranging from the mode-coupling
crossover temperature Tmct down to the experimental glass
transition temperature Tg using the swap Monte Carlo algo-
rithm.29 We then form glasses by rapidly quenching the con-
figurations to a lower “exploration” temperature Texp using
conventional molecular dynamics (MD). Therefore, our glassy
states at Texp would correspond to equilibrium supercooled
liquid configurations if brought back to Tf , which allows
us to identify Tf with Tool’s fictive temperature.26 Vary-
ing Tf is similar to varying the cooling or deposition rate
in experiments. Each of the N g swap-generated equilibrium
configurations defines a “glass sample” or a “glass metabasin.”

2. Explore using MD the potential energy landscape of each
glass metabasin,34,35 which contains multiple potential energy
minima, or inherent structures (ISs),36–38 separated by energy
barriers. The low exploration temperature Texp is chosen
to completely suppress particle diffusion over the simulated
timescales, thus confining the exploration to a single glass
metabasin defined by the initial configuration. At regular
intervals during the dynamical trajectory simulated at Texp,
the potential energy is minimized to generate inherent struc-
tures. We call nIS the number of distinct IS sampled over
a single glass metabasin and NIS that sampled over all N g
glasses.

3. The pairs of inherent structures visited consecutively in the
trajectory are candidate double-well (DW) potentials if the
transition is observed at least once in both directions. For
those, we compute the minimum-energy path (MEP) con-
necting these pairs of ISs using the nudged elastic band
(NEB) method.39,40 We obtain a library of NDW double-well
potentials.

4. The minimum energy path provides an effective one-
dimensional energy profile with two minima along which
the quantum splitting, decay rate, and tunneling matrix
elements are estimated via a one-dimensional Schrödinger
equation.17,21 We call NDW(E) the total number of dou-
ble wells with a quantum splitting lower than E, with
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NDW(E →∞) = NDW . The quantity NDW(E ∼ kBTQ) is
directly related to the number of two-level systems in the glass
we wish to estimate.

It is useful to decompose the number n(E) of low-energy
excitations per atom and per glass sample as

n(E) = NDW(E)
N Ng

= 1
N
× NIS

Ng
× NDW

NIS
× NDW(E)

NDW
, (3)

where N is the number of atoms. The standard TLS model postulates
that DW potentials originate from strongly localized atomic motions
with a small, finite density. The number of DWs in a glass is thus
extensive, yielding a finite n(E). Physically, in order to be active at
a given temperature TQ over an observation time tw, the TLS needs
to have not only the relevant energy splitting E ∼ kBTQ but also a
tunneling rate Γ such that Γtw ≫ 1. Because the TLS model postu-
lates a flat distribution of log Γ at small Γ, the effective number of
active TLS grows as log tw at large tw.1,2,41 In summary, according to
the TLS model, we should expect a finite n(E) ∝ kBTQ log tw when
N and N g both diverge.

Given that our TLS detection protocol is different from the
experimental one, we need to discuss how each ratio in Eq. (3)
is expected to behave when its denominator diverges, i.e., when
we increase statistics. Let us first consider the ratio NDW(E)/NDW .
This is the cumulative histogram of quantum splittings, which then
converges to a finite limit when NDW →∞. The TLS model then pre-
dicts that the remaining ratio NDW/(N g ×N) converges to a finite
value for large N and NIS. However, we discuss in Appendix A that
this ratio, as measured in our numerical protocol, may have very
different behaviors depending on the nature of TLS and their inter-
actions. In particular, because we work at fixed (and not very large)
N and because the N g glass samples are independent, the total num-
ber of sampled IS scales as NIS ∝ N g and the ratio NIS/N g then
converges to a finite value when N g →∞ at finite N. However, as we
will see, this value is so large (naturally scaling as exp N) that we are
not able to enumerate all the IS in a reasonable exploration time, and
as a result, NIS/N g depends (albeit quite weakly) on exploration time
in the classical MD simulation at temperature Texp. Predicting the
large scale behavior of NDW/NIS is more intricate; see Appendix A
for a discussion; we observe in our exploration protocol that this
ratio remains of order one and depends very weakly on the chosen
exploration time.

Overall, the determination of nTLS weakly depends on time in
both the experimental measurements where quantum dynamics is
at play and in our simulations involving classical exploration of the
landscape. However, the physical origin is quite distinct in both
situations, and this renders a direct quantitative comparison with
experiments delicate.

In the following, we discuss in more detail each step of the
construction of the DW library discussing, in particular, in a more
detailed way the behavior of the different terms in Eq. (3).

B. Metallic glass model
We simulate a ternary mixture of Lennard-Jones (TLJ) parti-

cles in three dimensions. Two particles i and j at positions ri and rj
separated by a distance rij = ∣ri − rj∣ interact with a Lennard-Jones
(LJ) pairwise potential V(rij), given by

V(rij) = 4εij

⎡⎢⎢⎢⎢⎣
(σij

rij
)

12

− (σij

rij
)

6⎤⎥⎥⎥⎥⎦
+ S(rij), (4)

if the particle pair distance rij/σij = xc is within a cutoff distance,
xc < 2.5, and have no interaction if their pair distance exceeds that.

To remove any resulting discontinuities from this truncation,
we consider the smoothing polynomial,42

S(rij) = 4εij

⎡⎢⎢⎢⎢⎣
C0 + C2(

rij

σij
)

2

+ C4(
rij

σij
)

4⎤⎥⎥⎥⎥⎦
. (5)

The choice of coefficients: C0 = 10/x6
c − 28/x12

c , C2 = 48/x14
c − 15/x8

c ,
and C4 = 6/x10

c − 21/x16
c , ensures the continuity of the potential

V(rij) and of its first two derivatives at the cutoff xc.
We consider three distinct types of particles, A (large),

B (small), and C (medium), in a ratio A:B:C = 4:1:1. The unit length
is σAA, and the unit energy is εAA, noted as σ and ε for simplic-
ity. The interaction parameters are εAB = 1.5ε, εAC = 0.9ε, εBB = 0.5ε,
εBC = 0.84ε, and εCC = 0.94ε for the energies and σAB = 0.8σ,
σAC = 1.25σ, σBB = 0.88σ, σBC = 1.0σ, and σCC = 0.75σ for the ranges.
All particles have the same mass m. The unit time is τLJ =

√
mσ2/ε.

This ternary mixture is an extension of the well-known
Kob–Andersen (KA)43 model with a third particle type (C), ensuring
resistance against crystallization and increased efficiency for equi-
libration with the swap Monte Carlo (MC) algorithm, as detailed
in Ref. 31 where the model is referred to as KA2. We simulate N
particles at number density ρ = N/L3 = 1.35 in a cubic box of lin-
ear size L with periodic boundary conditions. This particle density
is higher than the commonly investigated value ρ = 1.2.43 Indeed,
the pairwise attraction gives rise to a liquid–gas spinodal at low
enough temperature, which may intersect the glass transition line,44

leading to a gas–glass instability.45 The choice ρ = 1.35 ensures the
stability of all the studied glasses, as revealed by positive values
for the equilibrium pressure of the liquid down to the lowest tem-
peratures investigated, T = 0.488. Our model size L ∼ 9.6σ is large
enough to avoid finite-size effects on isolated TLS, but small enough
to make it unlikely to observe more than one TLS in a single
configuration.

C. Supercooled liquid dynamics and glass preparation
Once the details of the model have been established, one has to

estimate the relevant temperatures that govern its glassy dynamics.
These are the onset temperature To, the mode-coupling temperature
Tmct, and the laboratory glass transition temperature Tg .

To this aim, standard molecular dynamics has been carried out
using the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) code.46 A time step of dt = 5 × 10−3τLJ together with
a Nosé–Hoover thermostat was used to sample the canonical (NVT)
ensemble.

A hybrid swap MC/MD dynamics was also carried out using
a modified version of LAMMPS, as detailed in Ref. 47. Based on
previous work,31 we have found that short blocks of ten MD steps
with dt = 5 × 10−3τLJ interspersed with blocks of 2100 (1.75 ×N)
attempted particle swaps produce the optimal speed-up of the
dynamics of this system in the deeply supercooled regime. We
recall that both the standard and swap dynamics sample the
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FIG. 1. Angell plot of relaxation time τα vs inverse temperature measured in
physical molecular dynamics (MD, green) and equilibration particle-swap dynam-
ics (swap, magenta). The onset To ≃ 1.0 (gray) and mode-coupling crossover
Tmct ≃ 0.62 (orange) temperatures are located with dashed lines. The parabolic
fit (purple) is used to extrapolate the relaxation time data at lower temperature.
The shaded region between a VFT and parabolic law extrapolation for Tg locates
the “glass ceiling.”

same equilibrium thermodynamics of the system, provided that
proper decorrelation can be achieved within the simulation time
window.29

In order to monitor structural relaxation during standard
and swap MC dynamics, we have estimated the structural relax-
ation time τα from the self-intermediate scattering function
Fs(q = 7.2, t = τα) = 1/e. The relaxation time τα is plotted against
inverse temperature in the manner of an Angell plot in Fig. 1.

The onset of glassy dynamics is located at To ∼ 1.0, where
the relaxation time data of MD dynamics start to deviate from a
log-linear Arrhenius dependence valid at higher temperatures. To
obtain Tmct, we fit the relaxation times to a power-law behavior,
τα ∝ (T − Tmct)−γ, in a region of moderate supercooling, which
results in an empirical estimate of Tmct ∼ 0.62. Finally, the labo-
ratory glass transition temperature Tg is the temperature at which
τα(Tg) = 1012τo, in microscopic units. Simulations of such long
time scales are not tractable, so this temperature is obtained from
extrapolations of the available data. Two extrapolations have been
used: the Vogel–Fulcher–Tammann law48 and the parabolic law.49

These extrapolations define a range for the laboratory glass tran-
sition temperature of Tg ∼ 0.46–0.51, which we refer to as a “glass
ceiling,” because experiments cannot easily access temperatures
lower than Tg . Swap dynamics accelerates the relaxation by up
to 8 orders of magnitude at Tg and enables the preparation of
deeply supercooled configurations of the TLJ model, equilibrated
in the liquid state near the glass ceiling. This allows us to explore
for the present model of a metallic glass a broad range of fictive
temperatures.

D. Landscape exploration via classical
molecular dynamics

To explore the energy landscape, we used an in-house stan-
dard MD code in order to have better control over the exploration

workflow. The equations of motion were integrated with a smaller
time step of dt = 2.5 × 10−3τLJ to ensure a good quality of the struc-
tures sampled and to adequately distinguish between distinct IS.
Initial velocities are chosen from the Maxwell–Boltzmann distribu-
tion at Texp = 0.4 < Tg , and temperature is then kept constant by
using a Berendsen thermostat.50 This very low exploration temper-
ature is meant to confine the exploration to the glass metabasin
selected by the initial conditions, while still allowing the system to
cross enough energy barriers within the metabasin. We have care-
fully checked that, because standard MD is essentially arrested at
those temperatures (Fig. 1), no diffusion is observed. The mean-
squared displacement reaches a plateau over a microscopic time and
does not grow above it. Hence, the glass metabasin exploration is
fully driven by the thermal vibrations of the particles at Texp, and no
significant change in the solid structure is detected.

Once every τcg/dt MD steps, we use the current configuration
as the initial state to minimize the energy via a conjugate gradient
algorithm to obtain an inherent structure. We repeat this proce-
dure Ncg times until a large library of ISs is obtained, reaching a
simulation time τtotal = Ncgτcg .

Once a library of ISs has been constructed, we need to select
IS pairs as likely candidates to be connected by a path having a
double-well potential shape. To this aim, we select pairs of ISs that
appear consecutively in the exploration dynamics and record the
number of transitions between IS α and IS β in a matrix Tα→β,
where the labeling is ordered by energy (see Fig. 2). If a transition
occurs between α and β in both directions at least once (Tα→β ≥ 1
and Tβ→α ≥ 1), we consider that the pair (α,β) is a good candidate
double-well potential and we attempt to evaluate the MEP between
them.

Once a library of candidate transitions is obtained from the
minima, the MEP is found using the string method of Ref. 51, which
is implemented in LAMMPS as a modification of the nudged-elastic
band (NEB) approach.40 We used N images = 64 images of the sys-
tem to interpolate between the two IS. The images are connected
by harmonic springs with a spring constant κ = 0.125 εσ−2. The
optimization of the string method was done using the fast inertial
relaxation engine (FIRE) minimizer,52,53 while interpolation of the
MEP was carried out with a cubic spline. This should result in an
error scaling as O(N−4

images).54 The location of the transition state
is identified using a climbing image approach.55 Finally, we check
whether the converged MEP contains any intermediate minimum.
If not, we preserve it as a “good” double-well potential. Those with
intermediate minima can be recurrently refined by splitting into ele-
mentary double-well potentials if these intermediate transitions are
not already sampled in the dynamics.

The parameters and results of the landscape exploration are
summarized in Table I. The data are split between two datasets.
Dataset 1 is a coarse sampling with a long minimization period τcg
and a relatively small number of independent glass metabasins N g
at three preparation temperatures: Tf = 0.509, 0.558, 0.617. Dataset
2 is a finer and more extensive sampling, with a short minimiza-
tion period τcg , a large number of independent glass metabasins
N g , and covering four temperatures, Tf = 0.488, 0.509, 0.558, 0.617.
The use of two datasets allowed us to validate our choices for
the many parameters involved in the construction of a library of
double-wells.
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FIG. 2. Heterogeneity of the potential energy landscape of four different glass metabasins labeled in red on the left-hand side. Every row corresponds to a glass pre-
pared at Tf = 0.488 and sampled at Texp = 0.4. In each glass, distinct inherent structures (ISs) are labeled with Greek letters α = 0, 1, . . . , nIS −1 in order of increasing
energy eα. Each column corresponds to a different observable, labeled at the top in blue. The first three columns correspond to matrices where values are evaluated for
every pair of minima in a given glass. A consistent color map (viridis) is used for all matrices, with purple highlighting a low value and yellow highlighting a large one.
First column: (a), (e), (i), and (m): matrix of IS energy difference ∣eα − eβ∣ in units of 10−3ε. Second column: (b), (f), (j), and (n): matrix Tα→β counting the number of
observed transitions from α to β, shown in a log-scale. Third column: (c), (g), (k), and (o): matrix of Euclidean distance dαβ in units of σ. Fourth column: (d), (h), (l), and (p):
probability density function of IS energies. Red circles indicate the transitions that correspond to tunneling two-level systems.

TABLE I. Summary of the parameters used and the obtained statistics in the landscape exploration of the metallic glass model. Two independent datasets are used. The ratios
are evaluated at the end of the exploration protocol t = τtotal .

Dataset 1 Dataset 2

Tf 0.617 0.558 0.509 0.617 0.558 0.509 0.488
N g 16 64 256 128 256 512 1 024
τcg 11 17 43 2 3 18 31
Ncg 160 000 40 000 10 000 100 000 100 000 100 000 100 000
τtotal 1 760 000 680 000 430 000 200 000 300 000 1 800 000 3 100 000
NIS 36 247 23 287 30 180 70 326 88 112 119 159 117 780
NDW 10 039 8 359 12 117 11 841 20 692 41 342 38 027
NTLS 40 20 41 34 61 137 125
NIS/N g 2.27 × 103 3.64 × 102 1.18 × 102 5.49 × 102 3.44 × 102 2.33 × 102 1.15 × 102

NDW/NIS 2.77 × 10−1 3.59 × 10−1 4.01 × 10−1 1.48 × 10−1 2.35 × 10−1 3.47 × 10−1 3.23 × 10−1

NTLS/NDW 3.98 × 10−3 2.39 × 10−3 3.38 × 10−3 2.87 × 10−3 2.96 × 10−3 3.31 × 10−3 3.29 × 10−3
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III. TUNNELING STATES IN THE POTENTIAL
ENERGY LANDSCAPE
A. Statistics of potential energy minima

Landscape exploration of large glassy systems is an arduous
task as the number of minima is expected to scale exponentially
in the number of particles.37,38 Equilibrium configurations prepared
with swap Monte Carlo at a temperature Tf (Tg < Tf < Tmct) are
used to start long MD runs (∼105 steps) during which the system
is quenched to a lower temperature (Texp < Tf ).

We can assign to each IS α its energy

eα =
1
N∑i<j

Vij(∣r(α)i − r(α)j ∣) (6)

and compute the Euclidean distance between a pair (α,β) of ISs as

dαβ =
¿
ÁÁÀ 1

N

N

∑
i=1
∣r(α)i − r(β)i ∣2, (7)

where r(α)i is the position of the ith particle in the αth IS.
Figure 2 gives a pictorial overview of the results of the explo-

ration process for four distinct glass metabasins at the lowest
Tf = 0.488. Each row corresponds to a glass metabasin, ordered from
top to bottom by increasing the number of ISs sampled during explo-
ration. From left to right, the following quantities are displayed: the
matrices of the energy differences, of transitions, and of Euclidean
distances between IS and the probability density function (PDF)
of the IS energies eα observed during exploration. The ISs in the
matrices are ordered by increasing energy eα. The pairs of minima
corresponding to TLS are indicated by red circles in all the matrices;
they, typically, are found near the diagonal, which means that the
two minima forming a TLS are close in energy.

The most striking aspects that emerge from Fig. 2 are (i) the
large heterogeneity of the number of ISs (we find between nIS ∼ 6
and nIS ∼ 600 ISs in a single metabasin) observed even at this low
Tf near the estimated Tg ; (ii) the fact that individual ISs are clustered
both in energy and in Euclidean distance, as shown, e.g., by the block
structure of the dαβ matrix;56–58 (iii) the fact that the number of tran-
sitions recorded during exploration scales roughly as the number of
minima, which is apparent from the sparse and linear scaling nature
of non-zero elements of the transition matrix; and (iv) the fact that
low energy ISs are sampled repeatedly within the metabasin and the
PDF decays with increasing IS energy, as expected from a Boltzmann
distribution.

To obtain a more quantitative insight, we first perform explo-
ration runs with τcg = dt, i.e., minimizing the potential energy at
every MD step. The number of distinct ISs per glass is counted, and
a distribution of persistence times (τp) is inferred from the result-
ing time series: here, τp is the total time during which the energy
minimization always ends in the same IS before a new IS is found
in the next step. The cumulative distribution function (CDF) of τp,
for different Tf , is shown in Fig. 3(a). The shape of the CDF indicates
that the distribution of τp is bimodal, with a first peak around τp ∼ dt
(i.e., a single MD step) and a second one around τp ∼ 102dt. A more
careful analysis of the IS time series reveals that the peak at short τp
corresponds to processes during which the system jumps from a low-
energy IS to a higher energy IS where it stays for one or two steps,

FIG. 3. (a) Cumulative distribution function of the persistence time τp between
distinct consecutive ISs in the landscape exploration when minimizing every MD
step at Texp = 0.4. (b) Number of newly found ISs vs time, geometrically averaged
over 88 distinct glasses. Colors code for the glass preparation temperature Tf .

before transiting back to the low-energy IS. These processes are asso-
ciated with strongly asymmetric double-well potentials, which do
not give rise to TLSs.

Figure 3(b) shows the logarithm of the number of distinct ISs
obtained during exploration of a given glass metabasin, nIS(t), aver-
aged over glasses, as a function of the number of steps for different
Tf . We chose to average the logarithm of nIS in order to make
sure that the average would not be dominated by rare metabasins
with many IS. We, however, found that taking the logarithm of the
average, i.e., log[NIS(t)/N g], yields similar results.

We find a sub-linear power-law dependence of the number of
minima on the exploration time, i.e.,

⟨log(nIS)⟩ ∝ β log(t/τ0) ≈ log[NIS(t)/Ng], (8)

with an exponent β ∈ [0.4, 0.8] depending on the preparation tem-
peratures considered. As Tf decreases, the typical persistence time
increases, and the total number of minima per glass, at a given
time t, decreases. This reflects the already well-documented trend
that glass metabasins tend to become much simpler in more stable
glasses.56

The results of Fig. 3(a) suggest that one can make the explo-
ration process more efficient by performing the energy minimization
(that is computationally costly) after every τcg/dt MD steps only,
instead of after every step. We have chosen τcg in our final data pro-
duction runs for landscape exploration as a compromise between
accuracy and efficiency. A low value of τcg results in a more accurate
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count of minima and transitions, with fewer cases where intermedi-
ate minima need to be resolved. However, it can be computationally
demanding to minimize too frequently as new minima appear in
significant numbers only after ∼100 − 1000 steps. The values τcg
employed are provided in Table I.

We do not observe any saturation of the total number of IS
NIS(t), with growing exploration time t. As a result, we cannot per-
form an exhaustive search of all the IS within a glass metabasin, as
can be expected for a system of mesoscopic size (1200 atoms). Yet,
the average number of minima found in each glass basin, NIS/N g ,
is strongly depleted with increased glass stability at each fixed t. We
can conclude that more stable glasses have fewer ISs, provided that
the exploration time of the metabasin exceeds t ∼ τLJ . The time unit
τLJ seems to be close to the characteristic time for moving outside
of the basin of a single IS. In the real system at 1 K, one might also
expect that only a subset of minima are visited. However, in that case,
exploration is dominated by tunneling through barriers and not by
crossing them, as in our classical simulations.

B. Identification of double-well potentials
We now want to understand whether our landscape exploration

protocol is able to identify all the relevant double well potentials.
To this aim, for each DW potential, we measure the first time t at
which the corresponding IS pair passes all the filters to be considered
a candidate transition: both ISs have been included in the library,
and the conditions Tα→β ≥ 1 and Tβ→α ≥ 1 are met. We then com-
pute the number of detected DWs and TLSs (defined in Sec. III C)
as a function of t, shown in Fig. 4(a) for glasses prepared at the
lowest temperature Tf = 0.488. Similar results are obtained at all
temperatures. We observe that the growth of the number of detected
transitions with exploration time is slower than that of the number
of IS and is somehow intermediate between a power-law with a small
exponent and a logarithmic asymptotic behavior. The growth in the
number of TLS qualitatively matches that of the DW.

Assuming logarithmic behavior, a comparison with Eq. (8)
gives NDW(t) ∝ log t ∝ log NIS(t), which suggests that we are able
to identify the proper elementary excitations of our system, as
discussed in Appendix A; see the discussion after Eq. (A2). A
faster growth of NDW with NIS, which remains compatible with
our data, would suggest that interactions between elementary exci-
tations play a role. This result also implies that even if we are
unable to reach a proper saturation of the IS library with explo-
ration time, we are instead able to achieve a much more satisfactory
saturation of the DW library. This suggests that the new ISs discov-
ered at large times correspond to combinations of already detected
excitations.

We also note that the connectivity of the explored IS as encoded
in the ratio NDW/NIS shown in Fig. 4(b) remains of order one and
has a mild dependence on the exploration time. Note that this mild
time-dependence is still compatible, with NDW being logarithmic in
time and NIS being a power-law with a small exponent. We provide
the equivalent of Fig. 4 for the polydisperse soft sphere model in
Appendix B, Fig. 12.

C. Estimation of quantum tunneling
Two-level systems within our glassy models correspond to tun-

neling DW potentials with a low quantum splitting. The temperature

FIG. 4. (a) Number of inherent structures (green), double-wells (orange), and
two-level systems (purple) sampled in glasses (Tf = 0.488) as a function of explo-
ration time. The number of ISs grows as a power-law, while the growth of DWs is
slower at long times. TLSs follow the same time evolution as DW. (b) Ratio of the
number of DWs to that of ISs as a function of exploration time. The two panels
share the horizontal axis.

scale below which quantum effects are important is TQ ∼ 1 K in
experiments and can be obtained from comparing the interparticle
distance with the thermal wavelength, leading to

TQ =
2πh̵2

mσ2kB
. (9)

The MEP obtained via a converged optimization of the string
method, with no intermediates, results in a 1D potential energy
profile, as schematized in Fig. 5. By convention, the lowest energy
minimum is taken to be the one on the left. From this simplified
1D potential, several quantities can be defined: the forward barrier,
Va, is the energy difference between the transition state and the low-
est energy minimum; the asymmetry, ΔV , is the difference in energy
between the two minima, and the barrier height can be obtained
from these two quantities: Vb = Va − 1

2ΔV .
As a first approximation, we reduce the tunneling problem to

the effective one-dimensional potential of the MEP. Considering a
normalized reaction coordinate ξ ∈ [0, 1], which corresponds to the
fraction of the Euclidean distance d along the minimum energy path,
we can write the resulting Schrödinger equation as

− h̵2

2md2ε
∂2
ξψ(ξ) + V(ξ)ψ(ξ) = εψ(ξ). (10)

An interpolated MEP obtained from the NEB calculation is dis-
cretized by dξ = d/Nξ , where Nξ = 2000, using a cubic spline. The

J. Chem. Phys. 158, 014501 (2023); doi: 10.1063/5.0128820 158, 014501-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Schematic representation of a double-well potential illustrating the approx-
imate MEP obtained numerically (orange) and its extrapolation beyond the two
minima (blue), along with the forward barrier Va, asymmetry ΔV , barrier height
Vb = Va −ΔV/2 (black arrows), and the curvature of the potential-energy surface
at the lowest minimum ω1, highest minimum ω2, and transition state ωTS (blue
curved arrows). The quantum splitting E is the difference between the first two
quantum energy levels ε1 and ε2 (red dashed lines).

Laplacian is evaluated with a five-point finite difference stencil. We
use h = 1 to evaluate the quantum properties of the DW. This
leads to a dimensionless effective mass parameter m̃, which con-
trols the “quantumness” of the problem, as first introduced by
Vineyard,59

m̃ = m
εσ2

h̵2 . (11)

The MEP and the effective mass m̃ define a 1D potential for
the DW excitation. We assume that the tunneling problem can be
treated in a 1D approximation when the relevant classical path, the
MEP, is nearly independent of the others.18 We have calculated the
eigenvalues and eigenvectors of the Hessian along the MEP to check
that orthogonally to the MEP, the dynamics is harmonic and inde-
pendent of the reaction coordinate. The results are summarized in
Appendix C, and in Fig. 13.

The m̃ parameter depends on the choice of units. Nevertheless,
it can be tuned over a wide range of values (102–105)without chang-
ing the qualitative behavior of the quantum splitting distribution
obtained from our simulations.21 In this case, for the two sets of units
detailed in Sec. IV B, namely, argon (Ar) and nickel–phosphorous
(NiP), the value of m̃ is 1200 and 5250, respectively. The cor-
responding values of kBTQ are 0.005ε (for Ar) and 0.0012ε
(for NiP).

The five smallest eigenvalues ε1, . . . , ε5 are then evaluated using
ARPACK.60 The splitting is given by the first two energy levels,
E = ε2 − ε1. We consider as tunneling TLS all the filtered and tun-
neling DWs that have a splitting E < TQ. Following our notations,
their total number is NDW(TQ).

We can also attempt to map the DW profile into an actual two-
level system. In the standard TLS model, the Hamiltonian of a single
tunneling state takes the form

H = 1
2

⎛
⎜
⎝
Δ Δ0

Δ0 −Δ

⎞
⎟
⎠

(12)

in the localized representation. The diagonal splitting of the TLS can
be estimated by

Δ = ΔV + h̵
ω2 − ω1

2
, (13)

where ω1 and ω2 are the characteristic frequencies of the two min-
ima of the double-well potential; see Fig. 5. The decay rate of the
TLS can be evaluated in the Wentzel–Kramers–Brillouin (WKB)
approximation as

Γ = 1
m
[∫

a

0

dx
p(x)]

−1

exp[− 2
h̵∫

b

a
∣p(x)∣dx],

p(x) =
√

2m(ε2 − V(x)).
(14)

The tunneling matrix element Δ0 can be obtained from the effective
one-dimensional potential via the WKB approximation as

Δ0 ≈ ε̄ exp[− 1
h̵∫

b

a
∣p(x)∣dx], ε̄ = ε1 + ε2

2
. (15)

The integration limits a and b correspond to values of the effec-
tive reaction coordinate x where a certain energy level crosses the
double-well potential curve at either side of the barrier. This level is
ε2 for the calculation of Γ and ε̄ for Δ0.

As such, the quantities Δ and Δ0 are expected to approximately
obey the relationship E ≈

√
Δ2 + Δ2

0. The quantum splitting E is
plotted against

√
Δ2 + Δ2

0 in Fig. 6(a), showing the expected corre-
lation at all temperatures. Small deviations from E ≈

√
Δ2 + Δ2

0 are
observed at low splittings E. These deviations could appear due to
the breakdown in the various approximations that are made to cal-
culate E,Δ, andΔ0. The magnitude of the deviations becomes impor-
tant as E ∼ 1/N, suggesting that finite-size effects could influence the
absolute magnitude of very low splittings.

Figure 6(b) shows the cumulative probability distribution func-
tion F(Δ0) of the tunneling matrix element Δ0. The TLS model
predicts a flat PDF for logΔ0, which corresponds to F(Δ0) ∼ logΔ0
at small Δ0. Our data instead suggest that F(Δ0) ∼ Δφ0 with a very
small exponent φ ≈ 0.1, corresponding to a PDF p(Δ0) ∼ Δφ−1

0 . Such
behavior was discussed in more detail elsewhere.2,61

The decay rate Γ is also expected to approximately obey
Γ∝ Δ2

0E due to Landau–Zener tunneling,62 which is seen in the
inset of Fig. 6(b). Finally, the CDFs of Δ and E are shown in
Figs. 6(c) and 6(d), respectively. Below TQ, both the CDFs of Δ and
E are linear, as expected in the TLS model, and change very little
with Tf .

The ratio of tunneling TLS to generic double-wells,
NDW(TQ)/NDW , seems to be roughly constant ∼0.3% at all tem-
peratures. Because the function NDW(E)/NDW converges to a
stable finite limit when NDW →∞, the ratio NDW(TQ)/NDW
is also stable in both datasets presented in Table I, indicating
that it is not particularly sensitive to the details of landscape
exploration.
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FIG. 6. (a) Scatter plot of the quan-

tum splitting E vs
√
Δ2 + Δ2

0. Colors
code for different preparation tempera-
tures Tf . (b) Cumulative distribution func-
tion of the tunneling matrix element Δ0.
Inset: decay rate Γ vs Δ0 following a
Γ∝ Δ2

0 scaling (line). Cumulative distri-
bution functions of (c) the diagonal split-
ting Δ and (d) the quantum splitting E.
Dashed lines indicate TQ = 0.0012. The
linear behavior in (c) and (d) below TQ
directly validates the hypothesis of the
TLS model. Data in all panels were cal-
culated using m̃ = 5250, corresponding
to NiP units.

IV. MICROSCOPIC PROPERTIES
OF TWO-LEVEL SYSTEMS
A. Statistical properties of two-level systems

The data from the extensive exploration of the energy landscape
are summarized in Fig. 7, which presents the statistics of different
observables of tunneling DW potentials in relation to their esti-
mated quantum splitting E and the preparation temperature Tf of
the glass. The DW asymmetry, ΔV , is shown in Fig. 7(a) where one
can note a threshold value ΔV ∼ 10−2, below which the distribution
of quantum splittings becomes much broader. Asymmetry between
energy minima seems to be on average higher for higher preparation
temperature Tf .

The statistics of the energy barrier, Vb, vs E are shown in
Fig. 7(b). Our dataset probes a range of two orders of magnitude
in barrier heights between sampled tunneling DW. In general, DWs
with a low splitting E have a relatively high barrier Vb. DWs sampled

in lower Tf glasses typically have a higher barrier than those found
in glasses prepared at high Tf .

The statistics of the tunneling decay rate Γ (∝ Δ2
0 × E) are

shown in Fig. 7(c). The distribution of tunneling decay rates
Γ becomes narrower as the tunnel splitting E decreases. On average,
the decay rate Γ decreases with the quantum splitting E. Roughly one
third of the sampled tunneling DW decay in more than 1 h.

Our numerical study provides information on the microscopic
properties of the transition sampled. From a structural point of view,
the degree of localization can be evaluated from the atomic displace-
ment di

αβ = ∣r
(α)
i − r(β)i ∣ of atom i between the two IS α and β by

calculating the participation ratio (PR),

PR =
[∑i(di

αβ)2]2

∑i(di
αβ)4 , (16)

FIG. 7. Statistics of tunneling double-
well potentials vs the estimated quantum
splitting E: (a) asymmetry ΔV , (b) bar-
rier height Vb, (c) tunneling decay rate
Γ, and (d) participation ratio PR. All val-
ues were calculated with a reduced mass
m̃ = 5250, corresponding to NiP units.
Colors code for different preparation
temperatures Tf . Solid lines correspond
to average values at a given E obtained
via locally weighted regression.
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FIG. 8. Visualization of atomic displacements between the two minima forming a double-well (DW) potential with low quantum splitting. Only the particles that displace the
most are shown, and the rest are made transparent and faded in the background for clarity. (a) A localized two-level system in which a single particle moves in an almost
frozen structure, PR ∼ 1. (b) A typical two-level system, with PR ∼ 7. (c) A delocalized two-level system with PR ∼ 83; these cases are rare and mostly occur in less stable
glasses Tf = 0.617.

defined such that 1 ≤ PR ≤ N. The participation ratio indicates the
number of atoms involved in a transition.

The statistics of PR vs E are shown in Fig. 7(d). Most of the dis-
placements observed in our database are localized, and they have an
average participation ratio PR ∼ 8. Even the most delocalized DWs
that pass the filtering procedure do not have a PR much larger than
100. We see from Fig. 7(d) that, on average, the PR decreases with
decreasing Tf . This can be rationalized in terms of displacements
that tend to be more local in more stable glasses.

However, examples of delocalized DWs (PR ∼ 100) with a low
E do exist, but they are found only in glasses prepared at high
Tf ≃ Tmct. Such delocalized excitations correspond to very small
individual displacements and have a small barrier. This is a sim-
ilar pattern to what was also observed in the atomic tunneling of
complex crystalline defects, such as kinks in metallic Cu.63

We have also looked at the scatter plot of Euclidean distances
vs the quantum splitting, which is shown in Fig. 14 in Appendix D.
The patterns of real-space atomic displacements between the con-
figurations of the two ISs forming a DW potential are illustrated in
Fig. 8. Atoms are shown with a radius proportional to their interac-
tion range σ and colored by di

αβ, the magnitude of their displacement
between the two minima. In order to ease visualization, only the par-
ticles that displace the most are shown, with the rest faded into the
background for clarity. For clarity, only the first particles up to PR,
to the nearest integer, are highlighted. In general, displacements in
our database of DWs are highly localized and involve only several
atoms. We nevertheless can distinguish three classes of TLSs, similar
to a recent study on amorphous Si.64 The most localized DW poten-
tials have a PR ∼ 1, such as the one shown in Fig. 8(a). These would
correspond to defect hopping within the material. A more typical
TLS is shown in Fig. 8(b); it has a PR ∼ 7. It is still one atom that
moves significantly, but this triggers the rearrangement of nearest
neighbors as well. Although very rare, we also do find delocalized
excitations, see Fig. 8(c), where nearly 10% of the particles move a
relatively small distance throughout the whole structure. These tend
to occur in less stable, higher Tf ≃ Tmct ≃ 0.62 glasses.

B. Depletion of tunneling two-level systems
with increasing glass stability

The standard TLS model predicts a plateau n(E)/E → n0 as
E → 0, where n(E) is the cumulative distribution of quantum

splittings. The results obtained from our energy landscape explo-
ration of the ternary LJ model are shown in Fig. 9(a). In agreement
with the tunneling model, we observe a plateau for E < TQ (vertical
dashed) at all Tf and a peak at E ∼ 5 × 10−2. In addition to the low-E
plateau behavior observed at each temperature, we identify a clear
depletion of n(E)/E as Tf decreases. This agrees with the previous
computational estimation of the TLS density as a function of glass
stability in polydisperse soft-spheres (PSSs).21

In order to compare the TLJ data with the PSS model, we have
plotted n0/m̃ vs the stability of the glass, as encoded in the relax-
ation time ratio log(τα(Tf )/τo), in Fig. 9(b). In this representation,
glass stability increases from left to right. The relaxation time τα(Tf )
is either directly measured or estimated by extrapolating the data
to lower temperature using a parabolic law, which was shown to
perform well such extrapolation.65 The n0 values for PSS are from
Ref. 21, while we have refined our τα-extrapolation using the lat-
est data obtained via long MD simulations of PSS.66 The range of
glass stabilities explored in the ternary model is roughly two orders
of magnitude smaller than in PSS. This is due to the particle-swap
algorithm thermalizing more efficiently continuously polydisperse
mixtures compared to ternary mixtures. To make a meaningful com-
parison of the defects in both models, we have estimated the TLS
density n0 after a fixed exploration time of t = 103τLJ . This is the
longest exploration time that can be probed from our simulations,
in both models, at all Tf . This restriction has reduced the range of
n0 values showed previously for the PSS model.21 Nevertheless, at
this fixed exploration time, the two models show a similar deple-
tion of two-level systems, with the TLJ model showing a slightly
steeper depletion. As evidenced from Table I, this depletion of tun-
neling defects seems to be driven by a reduction in the number
of ISs available in a glass metabasin as Tf decreases. The curves
are shown for different values of m̃ to probe quasi-universality
by emulating different material properties within the same model.
This confirms that the precise value of m̃ does not affect our main
conclusion.

The choices of m̃ prompt a short discussion on the units. Two
sets of physical units have been investigated in order to make a
connection to experimental observations. The first one corresponds
to physical units that mimic pairwise interactions between argon
(Ar) atoms18 and has the following parameters: σ = 3.405 × 10−10 m,
ε/kB = 125.2 K, and a mass of m = 6.634 × 10−26 kg. The unit of
time is τLJ = 2.1 ps. In these units, the numerically estimated glass
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FIG. 9. (a) Cumulative distribution of the quantum splitting E for all tunneling
double-well potentials as a function of glass stability Tf (m̃ = 5250). Plateau val-
ues indicate n0. (b) Density of two-level systems n0 in ternary Lennard-Jones (TLJ)
and polydisperse soft-sphere (PSS) glasses as a function of stability, as encoded
in τα(Tf)/τo. Data for two sets of units: NiP (circle, m̃ = 5250) and Ar (square,
m̃ = 1200). PSS data from Ref. 21. To compare the models, we have fixed the
exploration time t = 103τLJ to estimate n0.

transition temperature is Tg ≈ 59 K, TQ ≈ 0.658 K, and m̃ ≈ 1200.
For the preparation temperatures Tf = 0.488, 0.509, 0.558, and
0.617, one gets nsim

0 ∼ 0.04, 0.09, 0.14 ,and 0.674ε−1σ−3, which
corresponds to nexp

0 ∼ 4.05 × 1047, 1.19 × 1048, 2.61 × 1048, and
8.95 × 1048 J−1 m−3.

The second set of units, used to mimic the average pairwise
interactions in a NiP glass,19,67 consists of the following parameters:
σ = 2.21 × 10−10 m, ε/kB = 934 K, and an average mass per particle of
m = 9.266 × 10−26 kg. The unit of time is τLJ = 2.5 ps. In these units,
the glass transition temperature is Tg ≈ 438 K, TQ ≈ 1.118 K, and m̃ ≈
5250. The defect density is nsim

0 ∼ 0.08, 0.19, 0.23, and 1.84ε−1σ−3,
which corresponds to nexp

0 ∼ 4.24 × 1047, 1.11 × 1048, 1.53 × 1048,
and 1.17 × 1049 J−1 m−3.

We find a modest variation in the absolute value of the tunnel-
ing defect density with m̃. The difference between the defect density
of the two models (PSS and TLJ) at the same glass stability is similar
in magnitude to the difference between the defect density calculated
for different values of m̃, and the data are insufficient to establish any
clearer pattern.

A reduction of the number of defects could be expected in
the TLJ model due to the change from a polydisperse system in
which every particle is different, to one with only three types of

indistinguishable particles (A, B, and C). An additional influence
could come from the attractive interactions, absent in the PSS model,
which have been recently suggested to have an important effect
on the elastic properties of glassy solids. In particular, a reduction
of the density of quasi-localized modes (QLMs) was reported as
the attractive part or “stickiness” of the pair-potential increases.68

The decrease in QLM density can be up to an order of mag-
nitude and was compared to the reduction in defects observed
during thermal annealing. We defer the discussion of the behavior
of QLM in these models and their potential relationship to n0 to
Sec. IV C.

C. Comparison to quasi-localized harmonic modes
To begin evaluating the vibrational modes of the TLJ glass

configurations, we first estimate their elastic moduli at different
Tf from athermal quasistatic deformation simulations. With an
initial IS obtained through energy minimization from an equi-
librium configuration, a suitable cycle of small deformations is
applied, each deformation being followed by an energy minimiza-
tion, until a stress–strain curve is obtained. The shear modulus
G is obtained from athermal quasi-static shear simulations (AQSs)
under Lees–Edwards boundary conditions, while the bulk modulus
K is obtained from quasistatic deformation with periodic bound-
ary conditions and a hydrostatic strain. The elastic moduli are
obtained from the elastic regimes of the corresponding stress–strain
curves,

G = σxy

γxy
, K = −V

Δp
ΔV

. (17)

Once the moduli have been determined, we calculate the trans-
verse ct =

√
G/(mρ) and longitudinal cl =

√
(K + 4G

3 )/(mρ) sound
velocities, and from them, we calculate the frequency ωt of the first
phonon,

ωt =
2π
L

ct , (18)

and the Debye frequency,

ωD = (
18π2ρ

2c−3
t + c−3

l
)

1
3

. (19)

We have calculated and diagonalized the dynamical matrix to obtain
the vibrational modes and their frequencies. This was done for the
ensemble of structures in Table I, as well as for larger 12 000-atom
TLJ configurations at Tf = 0.509, 0.558, and 0.617, using ensembles
of 1000 configurations at each Tf . Non-phononic vibrational modes
can be seen below the first phonon peak at ωt when the model size is
small enough to avoid significant hybridization with phonons. It is
typically assumed that the density of states D(ω) scales as ω4 in the
low-frequency limit.70

In Fig. 10(a), we show the integrated density of states I(ω),
scaled by the expected ω5 for the larger 12 000-atom models at
each Tf . Provided that D(ω) ∝ A4ω4, we would expect a plateau in
I(ω)/ω5 just below ωt . We find this to be the case; however, the
plateau (dashed) persists only over a limited range of frequency,
below which the scaling seems to change, in agreement with recent
results on the behavior of very-low frequency modes in the standard
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FIG. 10. (a) Integrated density of states, I(ω)/ω5, in large N = 12 000 ternary
Lennard-Jones (TLJ) glasses prepared at different Tf . Dashed lines represent the
A4/5 fits of I(ω)/ω5 just below ωt . (b) A4 vs n0 for N = 1200 (green) and larger
N = 12 000 (orange) TLJ glasses (orange circles) and the polydisperse soft sphere
(PSS) configurations from Ref. 21 (purple). The A4 and ωD values for the PSS
model are from Ref. 69.

KA model.71 The low-frequency behavior of D(ω) is currently under
intense scrutiny, and this discussion would require much more
statistics than we currently possess. Our goal is simpler as we only
wish to understand whether the evolution of localized harmonic
modes in D(ω) and of TLS are strongly correlated.

Moving on to the quantitative relationship between QLM and
TLS, we report in Fig. 10(b) the adimensional quantity A4ω5

D vs the
density of TLS obtained with NiP units. Again, the TLS density n0 is
compared after a fixed exploration time of 103τLJ for both models.
Since both quantities decrease with decreasing Tf , they necessarily
appear correlated in such a representation, but this of course does
not imply any causal relationship.72 In particular, our data seem to
preclude a direct proportionality between the two quantities of the
kind predicted in Ref. 33. This is especially true for the more realis-
tic metallic glass model. Interestingly, while the density of TLS of the
two models is very similar for glasses of equivalent stability, we find
instead an increased density of QLM in the TLJ model. These obser-
vations suggest that generic QLMs are poor predictors of TLS even
though both families of localized excitations are similarly sensitive
to the stability of the glass.

V. CONCLUSIONS
Our analysis confirms that TLSs are depleted with the increas-

ing glass stability in a second, more realistic, and physically

distinct glass-forming model.21 The number of two-level systems
converges relatively quickly at ∼0.3% of the number of the double-
well potentials identified during the classical exploration of the
potential energy landscape. As the glass preparation temperature Tf
decreases, we find a slowly increasing ratio of the number of double
wells over that of minima, which reflects a locally more connected
energy landscape. The significant depletion of two-level systems with
glass stability is in the end driven by the drastic reduction in the
number of minima in a typical glass metabasin as Tf decreases. The
number of minima as a function of exploration time increases slowly
as a sublinear power-law for all temperatures considered, with an
exponent that decreases with decreasing Tf . This means that while
the depletion of two-level systems remains robust, an exhaustive
counting of both minima and defects remains elusive, even when
exploration is strongly confined to a well-defined metabasin.

The exploration of low energy glass metabasins reveals a sig-
nificant degree of heterogeneity. In particular, we observe very
large fluctuations, of several orders of magnitude, in the number
of minima present in independent glass basins, even as Tf ≈ Tg .
An analysis of the metabasins from the perspective of connected
pairs of ISs shows a hierarchical structure of the energy landscape,
as previously observed in Refs. 56–58. The observation of these
extremely strong sample-to-sample fluctuations in glass samples
deserves further investigation.73,74

Comparing the continuously polydisperse soft-sphere system
to a more realistic ternary model, such as TLJ, some important dif-
ferences emerge as well. The absolute number of two-level systems,
as estimated from the n0 values for the TLJ model, are a bit closer
to those obtained in real experiments, but remain larger by roughly
an order of magnitude. While in the polydisperse model every par-
ticle is different, the ternary model contains particles of different
types that are indistinguishable, which should decrease the possible
number of defects, hence that of minima. From this point of view,
glassy materials of increased chemical complexity should naturally
exhibit more defects, while monodisperse or elemental counter-
parts of similar kinetic stability are likely to have fewer low-energy
excitations. We observe only a modest effect though, which seems
consistent with the experimentally observed quasi-universality of
TLS density.

Another factor for the reduced density of two-level systems is
the presence of attractive interactions and their influence on bar-
rier heights. Control over the strength of attractive interactions may
help modulate the properties of glassy materials through the reduc-
tion of low-energy excitations, but trade-offs might come in to play
with other types of defects, such as quasi-localized modes. Other
interaction potentials could also be studied in order to better under-
stand the role played by many-body interactions, anisotropy, and
dimensionality.

When attempting to perform a quantitative comparison of the
number of TLS observed in experiments and in computer simu-
lations, one should keep in mind that in experiments, landscape
exploration is driven by quantum tunneling at ∼1 K, which leads
to a characteristic log(t) dependence of the TLS density, while in
our computer study, the landscape exploration is driven by classical
thermal fluctuations at temperatures much higher than 1 K, lead-
ing to a power-law growth of the number of minima with time.
A direct comparison is then probably hindered by this important
difference.
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We have also explored the nature of the relationship between
quasi-localized modes and two-level systems. We find the density
of two-level systems to be correlated with that of quasi-localized
modes, but we do not find them to be proportional or related
by any causal link. At very low frequency, modes may no longer
obey an ω4 scaling although large uncertainties are present in our
data. Interestingly, while the two models have a similar density of
TLS, the density of QLM seems to increase for the TLJ model.
This observation suggests that there is a diversity of defects present
in glasses at low temperatures, which still evade an exhaustive
classification.

As perspectives for further numerical studies, we would like
to delineate three important research directions. First, to make our
main conclusion linking glass stability to the depletion of the den-
sity n0 of TLS even stronger, some of the approximations used to
estimate n0 should be removed from simulations. The most ambi-
tious task would be to explore the landscape and obtain the quantum
splitting for candidate TLS from a fully quantum-mechanical cal-
culation using path-integral methods.75,76 A second task would be
to improve the computational tools used in this work to signifi-
cantly increase the library of TLS through the use of techniques in
enhanced sampling and machine learning. Third, the discovery that
glass metabasins contain such a large number of minima organized
in a way that depends on glass stability, although hinted by previ-
ous work, requires a dedicated study to better quantify this evolution
and understand how it impacts the physical properties of glassy and
viscous liquid states.
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APPENDIX A: LARGE-SCALE BEHAVIOR OF N DW /N IS

We discuss here the behavior of NDW/NIS in the limit of a large
number of samples and particles. Let us consider, as an example, a
large system having K independent localized excitations (i.e., DW
potentials associated with the displacement of a few atoms). Note
that within the TLS model, K should be proportional to the num-
ber of atoms N, provided that N is large enough. Each DW can be
represented by a one-dimensional local reaction coordinate xi, with
an associated potential taken, for the sake of illustration, to be of
the form

vi(xi) =
1
4!

x4
i +

1
2
κix2

i − hixi. (A1)

If κ3
i + 9h2

i /8 < 0, this potential has two local minima, leading to a
DW with energy splitting ΔV i(κi, hi). Let us introduce a spin vari-
able σi = 0, 1 if xi is in the absolute, respectively, local, minimum of
vi(xi). If the excitations are diluted and thus do not interact, the total
energy of the system can be written as

V({xi}) =
K

∑
i=1

vi(xi) ⇒ EIS({σi}) =
K

∑
i=1
ΔViσi. (A2)

Such a system has NIS = 2K local minima, corresponding to all
possible combinations of the σi, with energy EIS({σi}). On the
other hand, we have NDW = K, with each IS being connected to
K others: in fact, the MEP associated with a composite excita-
tion of the form (σi = 0, σj = 0) → (σi = 1, σj = 1) would be decom-
posed into elementary events, e.g., (σi = 0, σj = 0) → (σi = 0, σj = 1)
→ (σi = 1, σj = 1), leading to the appearance of an intermediate local
minimum in (σi = 0, σj = 1) in the MEP. This very simple argument
thus suggests a relationship of the kind NDW ≈ log NIS.

In summary, for K ∝ N independent excitations in each glass
and for N g glasses, we would have in total NIS ∼ N g exp(K)
∼ N g exp(N), NDW ∼ N gK ∼ N gN, and NDW/(NN g), which would
then converge to a finite value, as in the TLS model.
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Yet, elementary excitations deform the solid matrix, resulting in
long-range elastic interactions, which would lead to a more accurate
representation of the form (see, e.g., Ref. 73 and references therein)

V({xi}) =
K

∑
i=1

vi(xi) −∑
i<j

Jijxixj. (A3)

For weak enough coupling Jij, the system still has NIS = 2K local
minima, but the DW profile of a single elementary excitation now
depends on the state of all the other excitations in the system. As
a result, the MEP path connecting a given pair of ISs is not neces-
sarily decomposed into elementary transitions, and the number of
DWs can be as large as NDW ∼ N2

IS. Depending on the nature of ele-
mentary excitations and their interactions, one would then observe
log NIS ≲ NDW ≲ N2

IS and, thus, very different large scale behavior of
the ratio NDW/NIS. Extracting the relevant elementary excitations in
this situation will obviously be cumbersome.

We can tentatively interpret the stability dependence of our
numerical data as a smooth crossover between interacting DWs
for poorly stable glasses with large concentrations of excitations to
the non-interacting ones in stable glasses where excitations become
more dilute.

APPENDIX B: DATA FOR POLYDISPERSE
SOFT SPHERES

In Fig. 11, we show data for the scaling of inherent structures
and DW numbers with time for the polydisperse soft-sphere glasses
studied in Ref. 21. We can see that the number of ISs grows as a
power-law, with scaling exponents changing from 0.65 to 0.17 when
increasing the glass stability, which is qualitatively similar to the scal-
ing of NIS(t) in TLJ glasses, shown in Fig. 3(b). These exponents
seem compatible with those obtained for the TLJ system.

In Fig. 12, we show the number of detected DWs as a function
of time for PSS glasses. The number of DWs grows slower than the
number of IS, and scaling seems slower than a power-law. All these
features are the same as those observed for TLJ glasses, as shown
in Fig. 4. A significant difference, however, is that at a similar glass

FIG. 11. Number of ISs per glass averaged geometrically averaged over all glasses
for polydisperse soft spheres. Dashed lines are guides for the eye, showing power-
law scaling ∼ tβ, with β = 0.17, 0.28, 0.65 for Tf = 0.062, 0.07, 0.092, respectively.

FIG. 12. Landscape exploration of polydisperse soft spheres prepared at
Tf = 0.07. (a) Number of minima (green), double-wells (orange), and TLS (pur-
ple) sampled as a function of time. (b) Ratio of the number of DWs to the number
of ISs as a function of time. The two panels share the horizontal axis.

stability and length of sampling, there are significantly more DWs
per IS in the PSS model.

APPENDIX C: RELATIONSHIP BETWEEN THE HESSIAN
AND THE MINIMUM-ENERGY PATH

We have studied the eigenvectors and eigenvalues of the Hes-
sian for configurations along the MEP, and these are shown in
Fig. 13. We find that a single eigenvalue (the lowest one) becomes
negative along the MEP, indicating a first-order saddle point. Only
several of the lowest frequencies change appreciably along the MEP.
We also projected the first six eigenvector tangent to the MEP,
and we find that the lowest mode contributes the most along the
path, while contributions from several others become important
only when approaching the minima.

This validates the picture of a network of minima where each
pair that corresponds to a TLS is connected by a 1D path, the MEP.
Orthogonal to this path, the dynamics is quasi-harmonic and is
determined by a set of frequencies that are nearly independent of
the reaction coordinate.

APPENDIX D: EUCLIDEAN DISTANCE BETWEEN
MINIMA AND QUANTUM SPLITTING

The Euclidean distance between minima is a key quantity for
tunneling DWs as it is strongly related to the tunneling rate. The
scatter plot of Euclidean distance d vs the quantum splitting E is
shown in Fig. 14. The Euclidean distance between ISs tends to be
larger at higher Tf .
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FIG. 13. Eigenvalues and eigenvectors of the Hessian along the MEP of a typical
TLS. (a) The first ten eigenvalues (in units of ε) along the MEP; the lowest eigen-
value is shown in purple, while the tenth mode is shown in yellow. (b) Projection of
the first six eigenvectors on the local tangent to the MEP. The first eigenvector is
shown in blue, while the next are shown in orange, green, red, purple, and brown,
respectively.

FIG. 14. Euclidean distance d vs splitting E. Colors code for different preparation
temperatures Tf . Average values of d at a given E are shown as a solid line.
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