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Abstract
Both natural ecosystems and biochemical reaction networks involve popula-
tions of heterogeneous agents whose cooperative and competitive interactions
lead to a rich dynamics of species’ abundances, albeit at vastly different scales.
The maintenance of diversity in large ecosystems is a longstanding puzzle,
towards which recent progress has been made by the derivation of dynamical
mean-field theories of randommodels. In particular, it has recently been shown
that these random models have a chaotic phase in which abundances display
wild fluctuations. When modest spatial structure is included, these fluctuations
are stabilized and diversity is maintained. If and how these phenomena have
parallels in biochemical reaction networks is currently unknown. Making this
connection is of interest since life requires cooperation among a large number
of molecular species. In this work, we find a reaction network whose large-
scale behavior recovers the random Lotka–Volterra model recently considered
in theoretical ecology. We clarify the assumptions necessary to derive its large-
scale description, and reveal the underlying assumptions made on the noise
to recover previous dynamical mean-field theories. Then, we show how local
detailed balance and the positivity of reaction rates, which are key physical
requirements of chemical reaction networks, provide obstructions towards the
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construction of an associated dynamical mean-field theory of biochemical
reaction networks. Finally, we outline prospects and challenges for the future.

Keywords: disordered systems, statistical field theory, theoretical ecology,
reaction networks

1. Introduction

The development of a theoretical framework to describe life as a physical system, with relev-
ant order parameters that distinguish animate from inanimate matter, is a major goal of 21st
century physics [1, 2]. First, it has long been accepted that such a framework should deal with
conditions far from thermodynamic equilibrium [3]. The absence of a Boltzmann distribu-
tion forces one to generally consider the full dynamics of out-of-equilibrium systems. Ideally,
the theoretical framework should be dynamic in nature. A second key aspect of life is that it
involves, at any scale, the coordinated action of a large number N of chemical species, which
interact via a complex set of chemical reactions. This opens the possibility of exploiting a
large-species N→∞ limit to obtain a tractable theory, with the prospect of obtaining univer-
sal results. This presence of variability at the level of species chemical interactions also adds
motivation to consider simplified models with random interactions.

Dynamical mean-field theory (DMFT) is essentially the unique framework that combines
both of the above essential aspects of the living state. It is a theoretical approach to disordered
statistical models that starts from a mesoscopic description. The disorder is typically intro-
duced via the couplings between degrees of freedom. The method relies on the assumption that
the number of degrees of freedom in the system is large; formally the thermodynamic limit
of an infinite number of species is taken. This DMFT describes the time evolution of a typ-
ical degree of freedom after the average over the quenched disorder has been carried out, and
yields a closed description of the dynamics in terms of an effective species and a small number
of order parameters. First developed to describe the dynamics of spin-glasses [4], DMFT has
since been successful in identifying and describing phase transitions in other areas of phys-
ics, such as neural networks [5, 6], structural glasses [7–9], and ecosystems [10–12]. DMFT
thus appears as a promising framework to describe life as a physical system characterized by
distinct dynamical phases.

Recently, substantial progress was made to obtain a DMFT of ecosystems, using the gen-
eralized Lotka–Volterra (GLV) model as a starting point [10–12]. This theory has shed light
on the ‘diversity paradox’, namely the counterintuitive fact that many ecosystems are much
more diverse than what is expected from niche-filling. Importantly, the theory has revealed
that dynamical models for ecosystems can exist in a variety of phases, characterized either by
a single equilibrium, multiple marginally-stable equilibria, or chaos [13, 14]. The framework
has thus allowed extension of the notion of phase away from thermodynamic equilibrium.

Compared to ecosystems, the organization of life occurs primarily at much smaller scales,
where molecules are the main actors. As stressed by Anderson [15], life requires a diversity of
chemical species, which are often involved in complex chemical reactions networks (CRNs).
Even in the constant temperature case common in biology, CRNs can exhibit rich dynamical
behavior: unstable steady states, multiple steady states, sustained composition oscillations, and
chaotic dynamics [16–18]. These behaviors have a parallel in model ecosystems, where their
existence has been firmly established by DMFT.

Our article builds naturally on past works employing a reaction network representation of
ecological models [19–23]. Our interest is however not only to use CRN as a means to study
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model ecosystems, but to investigate to what extent the recent advances made possible by
the development of DMFT in theoretical ecology can advance our understanding of emergent
behavior in CRNs. We specifically investigate the behavior of CRNs in the limit of many
chemical species which, to the best of our knowledge, has not been considered in the past.

The overarching goal of this article is to ask: to what extent can one develop a DMFT for
general chemical reaction networks? Our strategy is to first find a chemical reaction network
whose large-scale behavior yields the GLV model studied in ecology. We then examine which
features of such a GLV reaction network are universal, and which features of general reaction
networks are absent from the mapping. We will conclude that the present DMFTs for ecology
do not apply to generic chemical reaction networks, suggesting the existence of universality
classes of DMFTs yet to be explored.

The article is organized as follows. In section 2, we review the two existing analytical tech-
niques on which our work is based: dynamical mean field theory, and the Doi–Peliti path
integral formalism for chemical reaction networks. In section 3 we find a microscopic reac-
tion network which maps to the GLV model studied in the ecology literature. We show that
the derivation of the ecology model is not systematic and requires stringent, and in general
unjustified, assumptions. We then derive a generalized DMFT starting from the path integral,
and recover the large-species DMFT obtained previously. In section 4, we explore the con-
sequences of the mapping between chemical reaction networks and theoretical ecology. In
section 5, we conclude by discussing future directions for the development of new classes of
DMFT.

2. Background

In this section, we review two existing analytical techniques that wewill combine in this article:
(a) DMFT, and (b) the Doi–Peliti path integral formulation for chemical reaction networks.

2.1. A brief review of DMFT

DMFT is a general technique which allows to describe the dynamical behavior of mean-field
disordered systems with a minimal number of relevant order parameters. It is distinct from
the DMFT of correlated electron systems [24], which describes the behavior of a quantum-
mechanical system in terms of an effective impurity. DMFT was first introduced to study
the dynamics of mean-field spin glasses [4], and later applied to the spherical p-spin model
[25, 26]. The long-time asymptotic solution to the equations for the latter exhibits the aging
phenomenon and explains it in terms of an effective temperature, a great achievement for
DMFT [26]. Since then, DMFT has successfully been applied to neural networks [5, 6], struc-
tural glasses [7–9], and ecosystems [10–12]. To the best of our knowledge, DMFT has not
previously been applied to chemical reaction networks.

The main ingredients to construct a dynamical-mean field theory are the following. Con-
sider a generic theory with dynamical variables σi(t) with i= 1, . . . ,N in the presence of
disorder. Depending on the context, these could be spin variables, or species abundances,
for which disorder is introduced via random coupling coefficients, or random inter-species
interactions. Dynamical mean-field theories generally begin with a Langevin dynamics for
the variables σi(t). Either by path-integral methods [4, 27, 28], or the dynamical cavity
method [29], one performs a disorder average to eliminate it. The many-species dynamical
problem is then reduced to an effective process for a representative degree of freedom. A
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consequence of the disorder average is however to introduce two-time quantities. The most
basic of these are the correlation function C(t, t ′) = 1

N

∑
i⟨σi(t)σi(t ′)⟩ and the response func-

tion R(t, t ′) = 1
N

∑
i⟨δσi(t)/δhi(t ′)|h=0⟩, where hi(t) is a field conjugate to the dynamical vari-

able σi(t). Here ⟨·⟩ denotes a thermal average subject to appropriate initial conditions. In the
simplest class of DMFTs, one obtains a pair of integro-differential equations involving only
C(t, t ′) and R(t, t ′) [4, 25]. One can also find theories for which the equations for the evolu-
tion of C and R involve a memory kernel that must be determined from a self-consistent 1D
stochastic process [7, 10–12]. More generally, we include in the DMFT category any theory
that reduces the number of degrees of freedom from N→∞ down to a finite number. We will
distinguish multiple levels of complexity in our work.

2.2. A brief review of the Hamiltonian formulation of chemical reaction networks

We consider a closed volume Ω containing a mixture of N chemical species denoted Xi with
i= 1, . . . ,N. We note ni(t) the number of molecules Xi at time t. We focus on the well-mixed
limit and consider homogeneous concentrations, expressed in units of c◦, the standard concen-
tration 1mol l−1. The state of the mixture is fully specified by the vector n⃗(t) of the number
of molecules of each species, which changes when a chemical reaction occurs. We consider
chemical reactions, labelled by α, of the form∑

i

pαiXi
kα
−⇀
∑
i

qαiXi, (1)

where kα is the rate of reactionα. By convention, pαi and qαi are the stoichiometric coefficients
for the molecular species Xi as reactant and product, respectively. The complete set of reac-
tions is understood to contain each reaction in both forward and backward directions. In full
generality, reactions need not conserve the number of molecules, thus allowing interactions
with external reservoirs.

2.2.1. Chemical master equation. While the rate equations describe the time evolution of the
average number of molecules, they do not capture the fluctuations intrinsic to the stochastic
nature of chemical reactions. To obtain a complete and closed description of the dynamics,
one must track the evolution of the probability distribution P(⃗n, t), as described in [30]. This
yields the chemical master equation

∂P(⃗n, t)
∂t

=
∑
α

k̃α

(∏
i

Ei
pαi−qαi − 1

)∏
j

(
nj!

(nj− pαj)!

)
P(⃗n, t), (2)

where the products run over the N species, and pαj = 0 if Xj does not intervene in
reaction α. The probability for a collision involving pαj molecules Xj is proportional to
nj(nj− 1) · · ·(nj− pαj + 1)/(c◦Ω)pαj . This gives rise to the factorial terms in equation (2), and
the rescaled reaction rate k̃α = kα(c◦Ω)1−

∑
i pαi . The effect of each reaction α is to transform

nj into nj + qαj− pαj. This is conveniently captured by the step operator Ei which acts on any
arbitrary function f(⃗n) as

Ei f(⃗n) = f(⃗n+ 1⃗i), E −1
i f(⃗n) = f(⃗n− 1⃗i),

with 1ij = δij. We assume a well-stirred setting in which there is no spatial dependence of con-
centration, although the derivation straightforwardly extends to the more general case [31–33].

However, the chemical master equation (2) cannot be solved analytically for generic chem-
ical reaction networks.
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2.2.2. Doi formalism. To make progress, we adopt the Hamiltonian formalism developed
by Doi [31] which consists in an exact rewriting of the chemical master equation (2). Doi
observed that the step operators in (2) and associated factorial terms nj!/(nj− pαj)! have a nat-
ural representation in terms of bosonic creation and annihilation operators. Reaction systems
thus have a natural interpretation in terms of quantummechanics through second quantization.

In this formalism, one introduces a non-Hermitian quasi-Hamiltonian, or Liouvillian, H.
Unlike the rate equations, the Hamiltonian H completely specifies the reaction network, as
the chemical master equation does. Doi’s construction and the corresponding path integral
formulation are reviewed in appendix A. The resulting HamiltonianH is a sum of contributions
from each reaction, H=

∑
αHα, with

Hα(ϕ⃗, ϕ⃗
∗) = k̃α

∏
j

ϕ∗
j
qαj −

∏
j

ϕ∗
j
pαj

∏
i

ϕpαi
i . (3)

The arguments ϕ⃗, ϕ⃗∗ are abstract quantities that get introduced first via creation and annihil-
ation operators, and then as complex variables in the path-integral construction. Only their
product, ϕ∗

j ϕj = nj, has a direct physical interpretation as the number of molecules of Xj. We
thus perform a Hopf–Cole transformation [34–38]

ϕ∗
j = eνj , ϕj = nje

−νj , (4)

in terms of which we have

Hα(⃗n, ν⃗) =
[
eν⃗ ·⃗sα − 1

]
k̃α
∏
i

npαi
i︸ ︷︷ ︸

≡Fα (⃗n)

, (5)

where we introduced the stoichiometric matrix sαj = qαj− pαj. Here we are abusing notation
slightly to write H as a function of its new arguments n⃗ and ν⃗, in place of the previous ones.
In what follows we always intend this form for H. The doubling of degrees-of-freedom in
equations (3) and (5) is characteristic of dynamic problems [34, 39, 40].

The ν⃗ variables do not have a straightforward interpretation. They can be considered as a
per-species bias or ‘tilt’ [38]. As explained below, ν⃗ = 0 corresponds tomean-field trajectories.

Several features of (5) are important. First, the ν⃗-dependent factor is independent of the
kinetics: conservation of probability requires thatHα(⃗n,0) = 0 for any n⃗, and the specific form
in (5) follows from the Doi–Peliti construction for reaction networks with a stoichiometric
matrix sαj. Second, the kinetics are encoded in the function Fα(⃗n), which can be written as

Fα(⃗n) = kα(c
◦Ω)

∏
i

( ni
c◦Ω

)pαi

. (6)

The specific form in (6) corresponds to the usual mass-action kinetics, but other choices are
possible, so long as Fα(⃗n)⩾ 0. Finally, the Hamiltonian (5) specifies only the dynamics of the
system, and does not contain any information about thermodynamics. We will return to the
consequences of thermodynamics, in particular the detailed balance condition, below.

2.2.3. Peliti integral. Using Doi’s Hamiltonian formulation, Peliti proposed a path-integral
description of reaction systems, constructed as in quantum mechanics [32]. In principle, one
can obtain the complete statistics of species abundances by evaluating the path integral

Z=

ˆ
Dn
ˆ

Dν e−S,
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with the action

S=
ˆ tf

0
dt [ν⃗ · ∂tn⃗−H(⃗n, ν⃗)]+ SBC, (7)

where

SBC = [⃗n(0)− n⃗0] · ν⃗(0)+
∑
j

nj(tf)[−e−νj(tf) + 1− νj(tf)],

encodes the boundary conditions at initial t= 0, and final tf times. Here we consider ni(0) = n0
i

as initial condition.
In practice, observables are computed by adding sources, or fields, to the partition function

Z. For that purpose, we consider the generating function

Z(⃗z, tf) =
∑
{⃗n}

zn11 z
n2
2 · · ·z

nN
N P(⃗n, tf).

The partition function is recovered for z⃗= 1, and moments are computed by derivatives at
z⃗= 1. Elgart and Kamenev [41] showed that values z⃗ different from unity are necessary to
understand rare fluctuations. They also showed that the path-integral representation of the gen-
erating function is that of the original partition function (⃗z= 1), equation (7), with differences
only in the boundary terms

SBC =
∑
j

[
[⃗n(0)− n⃗0] · ν⃗(0)+ nj(tf)[−zje−νj(tf) + 1− νj(tf)]

]
.

This gives boundary conditions ν⃗(tf) = log z⃗, n⃗(0) = n⃗0. The particle number statistics are
extracted from the generating function by appropriate contour integrals. For example, the mar-
ginal distribution of the jth species is

ρj(mj) =

˛
dzj
2πi

1

zmj+1
j

Z(⃗1+(zj− 1)êj, t)

where 1⃗= (1,1, . . . ,1) and êj = (0, . . . ,0,1,0, . . . ,0)with a 1 in the jth position, and the integral
is around the unit circle. Physical quantities are thus determined by Z(⃗z, tf) in the vicinity of
z⃗= 1⃗.

To evaluate the path integral Z in practice, one resorts to approximations. Since ν⃗(tf) =
log z⃗, and we need to consider Z in the vicinity of z⃗= 1⃗, this motivates a small-ν expansion.
From conservation of probability, the action begins with O(ν). To leading order, O(ν) in S,
one obtains the classical rate equations. To the next order, O(ν2), one obtains the chemical
Langevin equation, derived below.

2.2.4. Instanton equations. Instead of making a small-ν expansion of the action, one can
look for saddle-points, i.e. paths that give the largest contribution to the integral. To motivate
this, we consider a naive scaling analysis of the action. Suppose that the species numbers are
large, n≫ 1. Since the number of reactants pαi is generally varying from reaction to reaction,
we see from (5) and (6) that in order to have nontrivial dynamics for general reaction net-
works, we should have c◦Ω≫ 1, with the dimensionless concentrations ni/(c◦Ω) = O(1). In
this case H∼ c◦Ω≫ 1 and a saddle-point analysis of the path integral is formally justified.
Following the nomenclature of field theory we call these saddle-point paths ‘instantons’ [42].
The instanton equations, derived in appendix B, are
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∂n⃗
∂t

=+
∂H
∂ν⃗

=
∑
α

Fα(⃗n)⃗sαe
ν⃗ ·⃗sα , (8a)

∂ν⃗

∂t
=−∂H

∂n⃗
=
∑
α

∂Fα(⃗n)
∂n⃗

[
eν⃗ ·⃗sα − 1

]
. (8b)

We see immediately that ν⃗ = 0, corresponding to mean-field trajectories, is always a solu-
tion. In that case (8a) reduces to the reaction rate equations.

Equations (8a) and (8b) take the form ofHamilton’s equations, so several properties familiar
from classical mechanics also hold here. In particular, along an instanton the time-evolution
of the Hamiltonian is

dH
dt

=
∂H
∂ν⃗
· ∂ν⃗
∂t

+
∂H
∂n⃗
· ∂n⃗
∂t

+
∂H
∂t

=
∂H
∂t

.

We see that if the Hamiltonian is time-independent, it is conserved by the dynamics along the
instantons.

2.2.5. Expansion to obtain the Langevin equation. As explained in appendix C, keeping
terms to order O(ν2) in the action, one obtains the chemical Langevin equation

∂tn⃗= h⃗(⃗n, t)+B(⃗n, t)1/2 · ξ⃗ , (9)

where the drift h⃗ and correlation matrix B are related to the Hamiltonian

h⃗(⃗n, t) = ∂ν⃗H(⃗n(t),0), (10)

B(⃗n, t) = ∂ν⃗∂ν⃗H(⃗n(t),0), (11)

and ξ⃗ is a white noise

⟨ξj(t)⟩= 0, ⟨ξj(t)ξk(t′)⟩= δ(t− t′)δjk.

The boundary conditions are n⃗(0) = n⃗0 and trajectories are weighted with e−S, with

S=
1
2

∑
j

nj(tf)(1− z2j )

zj
+

1
2

∑
j

log(zjnj(tf)).

The late-time boundary contribution is specific to the generating function; alternative boundary
conditions are discussed in the appendix C.

From the derivation of the Langevin equation we can infer that z− 1∼ 1/
√
n, thus ν ∼

logz∼ 1/
√
n. This justifies a posteriori the small-ν expansion for large systems, and is also

consistent with the saddle-point analysis, since the action scales as n/
√
n≫ 1. More precisely,

for a species j the small-ν j expansion is justified when nj is large. This small-ν expansion is
thus the system-size expansion in path-integral language.

2.2.6. Thermodynamics and detailed balance. To this point, we have only considered the
kinetics of reaction networks. We now turn to the constraints imposed by thermodynamics.
Consistency with thermodynamics requires that if a reaction α occurs with rate k+α , then its
reverse must occur with rate k−α . The ratio of the rates is fixed by (∆G)α = (⃗qα− p⃗α) · G⃗, the
difference in molar Gibbs free energy between products and reactants, expressed in units of
RT

k+α
k−α

= e−(∆G)α , (12)
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which is known as local detailed balance [43]. Using modern transition state theory [44], one
can predict from first principles

k+α = k0 e
−(δG)α , (13)

where we introduced (δG)α = GAα − p⃗α · G⃗, the difference in molar Gibbs free energy
between the activated complex Aα of reaction α and the reactants, and k0 = 1/(2πβℏ)≈
6× 1012 Hz at 300K. Equation (13) holds for both forward and backward reactions, mutatis
mutandis so that (12) holds

k+α
k−α

= e−(GAα−
∑

i pαiGi)e+(GAα−
∑

i qαiGi)α = e−(∆G)α .

This allows us to rewrite the kinetic part of the Hamiltonian as

Fα(⃗n) = ke−GAα

∏
i

(
ni

ceqi Ω

)pαi

, (14)

with k= k0c◦Ω and ceqi = c◦e−Gi .
When a reaction occurs in a forward-reverse pair α+ and α−, its contribution to the right-

hand side of the ∂n/∂t instanton equation is

Fα+
s⃗α+

eν⃗ ·⃗sα+ +Fα− s⃗α−e
ν⃗ ·⃗sα−

= s⃗α+
ke−GAα

[
eν⃗ ·⃗sα+

∏
i

(
ni

ceqi Ω

)pαi

− eν⃗ ·⃗sα−
∏
i

(
ni

ceqi Ω

)qαi
]
.

The bracket vanishes if ni = ceqi Ω and νi = 0 for all i. Thus if all reactions occur in such pairs,
this is a steady-state solution. This is the well-known expression for thermal equilibrium in a
CRN [30].

The fact that chemical reactions satisfy detailed balance has profound physical and con-
ceptual consequences. In particular, this makes the system time-reversal symmetric, at least
statistically. For any field theory, symmetries of the system appear as symmetries in the action.
There is thus a symmetry operation for the action that reverses time, as detailed in appendix D.
When all reactions occur in forward-reverse pairs satisfying local detailed balance, the trans-
formation

ν̃i(tf− t) =−νi(t)+ log(ni(t)/(c
eq
i Ω)),

ñi(tf− t) = ni(t),

is a symmetry of the action. Note that the transformation is nonlocal in time. Steady solutions,
that are invariant under time-reversal, satisfy 2νi = log(ni/(c

eq
i Ω)). The thermal equilibrium

solution ni/Ω= ceqi is recovered when νi = 0, as expected [30].

2.2.7. Existence of Lyapunov function. Wehave shown that ν⃗ = 0 alongmean-field solutions,
hence H= 0 from equation (5). Since H is conserved by the instanton dynamics, we also have
H= 0 on relaxations toward mean-field solutions. The locus of points defined by H= 0 thus
plays a special role [34, 38, 41]. Let us implicitly define a functional Ψ(⃗n) by considering the
equationH[µ⃗, n⃗] = 0where µ⃗= ∂Ψ/∂n⃗. This is a time-independent Hamilton–Jacobi equation
[38, 45]. Let us compute the derivative of Ψ along the deterministic dynamics ν⃗ = 0 [45]

dΨ
dt

=
∂Ψ

∂n⃗
· d⃗n
dt

∣∣∣∣
ν⃗=0

= µ⃗ · ∂H
∂ν⃗

∣∣∣∣
ν⃗=0

= µ⃗ ·
∑
α

Fα(⃗n)⃗sα,
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where we have used Hamilton’s equation (8a). Subtracting H[µ⃗, n⃗] = 0 (5), we find that Ψ is
non-increasing under the deterministic flow

dΨ
dt

=
∑
α

Fα(⃗n)
[
µ⃗ · s⃗α− eµ⃗·⃗sα + 1

]
⩽ 0,

since ea− 1− a⩾ 0 for all real a, and Fα ⩾ 0. We have shown that Ψ is a Lyapunov function
for the deterministic dynamics. The quantity −Ψ has the interpretation of a non-equilibrium
entropy functional, and −dΨ/dt corresponds to the total entropy change, including both
entropy production and entropy exchanges [45].

The existence of a Lyapunov function for chemical reaction networks in the deterministic
limit has important consequences. In fact, complex chemical reaction networks may have mul-
tiple attractors [37, 38, 46–48]. In the limit of small systems, hopping between these attractors
may occur, giving rise to interesting dynamical behavior. The existence of a Lyapunov func-
tion in the deterministic limit, recovered for large system size, however prevents such hopping
dynamics.

A Lyapunov function is also a practical tool, since an explicit expression for it can be used to
study the statistics of attractors.When noise is present, then at the level of the Langevin dynam-
ics, there may be no Lyapunov function, but still there is an effective Hamiltonian governing
the long-time behavior [49]. For the Lotka–Volterra model studied below, such an effective
Hamiltonian has been used [14].

3. GLV model as a reaction network

3.1. GLV model

Consider an isolated ecosystem with N species i= 1, . . . ,N and abundances ni(t) of each spe-
cies. We assume that the ecosystem is well-mixed and do not consider spatial dependences
of the abundances. A minimal model of population dynamics in the ecosystem must include
a birth rate and death rate for each species, along with inter-species interactions. The GLV
model includes these main features. It also includes a small immigration rate λ which pre-
vents extinctions. The stochastic nature of births and deaths, causing populations to fluctuate
even without external noise, is captured within the GLV by demographic noise. We are even-
tually interested in large ecosystems, whose complexity and inherent randomness is modeled
by taking random inter-species interaction strengths [50]. We consider the GLV model in a
Langevin form

dni
dt

=
ri
κi
(niκi− n2i )−

∑
j̸=i

Sijninj +λ+
√
niξi, (15)

where ri and κi are respectively the birth rate and carrying capacity of species i, and ξi is a
white noise with ⟨ξi⟩= 0,⟨ξi(t)ξj(t ′)⟩= 2ω2δijδ(t− t ′). The interaction matrix elements Sij
are Gaussian random variables, with mean, variance and asymmetry given by

Sij = s/N, (Sij− Sij)2 = σ2/N, (Sij− Sij)(Sji− Sij) = γσ2/N, (16)

with a scaling of the cumulants ensuring a proper large ecosystem limit N≫ 1. The parameter
−1⩽ γ ⩽ 1 characterizes the degree of asymmetry in the inter-species interactions.

The GLV model equation (15) has been studied in the limit of many interacting species
N≫ 1, both in the deterministic limit where ω= 0 [13, 51] for general ri and κi, and with
finite demographic noise [52] with parameters ri = 1,κi = 1. The phase diagram was also
established with and without demographic noise in the limit of symmetric strongly competitive
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interactions [53]. The species-local part of the right-hand side (niκi− n2i ) can be generalized
to other polynomials fi(ni), see [14, 52]. Recently, a DMFT has also been built for the GLV
considering structured, non-random, interactions [54].

Although one might expect demographic noise to be irrelevant in large populations, it is
crucial when the underlying system has multiple attractors, as discussed below. Moreover in
related models, its importance has been emphasized in its effect on spatial patterning [19, 55],
temporal oscillations [20], ecology–evolution interactions [21], and on the full distribution of
abundances [56]. Quite generally, in nonlinear complex systems, one expects that the limits
t→∞ and volume Ω→∞ (or carrying capacity κ→∞) do not commute [47]: if t→∞ is
taken at finite Ω, then the system can explore multiple attractors and will sample states with
an effective ‘thermodynamic’ distribution, while if Ω→∞ is taken at finite t, then instead the
system can be stuck in one of multiple attractors.

In both deterministic (ω= 0) and stochastic (ω > 0) forms, the GLV model is necessar-
ily approximate because population abundances are discrete numbers, while the ni(t) in
equation (15) are continuous variables. While this difference is not expected to be critical
when ni(t)≫ 1, theory and simulations of equation (15) show that abundances can vary over
a wide range, with many becoming small [12–14, 51]. This is particularly so in a phase with
multiple attractors, for which the dynamics is chaotic [12, 14]. In these scenarios it is import-
ant to generalize equation (15) to a model that accounts for the fundamental discreteness of
species abundances.

Our goal here is to find a reaction networkwhosemacroscopic behavior yields equation (15)
in some limit. By doing so, the tools of chemical reaction network theory reviewed in section 2
can be brought to bear on ecosystems. In the few-species case, the GLV model has a standard
interpretation as a reaction system, for example between predator and prey, and reaction net-
work representations have been used elsewhere in ecology [19–23]. Likewise the Doi–Peliti
path-integral formulation for CRNs has been adopted for ecological models (reviewed in [57]),
but not in the many-species limit of interest here. To our knowledge there is no exposition of
the conditions under which the GLV model equation (15), for which DMFT has been built,
can be obtained from a microscopic model. The reaction network interpretation is important
because it holds for an arbitrary number of individuals, and can therefore be used to disambig-
uate possible continuum limits. Moreover this mapping will allow us to discuss the generality
of the ecology DMFT, and whether it has an analogue for true chemical reaction networks.

3.2. Deterministic limit

We search for a reaction network whose dynamics coincides with that of the ecology GLV
model (15). As a first step, we consider the deterministic limit and leave the treatment of
the noise term to the next section. In order to find the relevant set of reactions, we compare
the deterministic terms in the right-hand side of (15) with the general reaction equation (8a),
evaluated in the deterministic limit ν⃗ = 0. We compare the chemical reaction (1) with the
corresponding reaction rate equation (8a) and assume, without loss of generality, the form
from transition state theory (14), with k0 obviously arbitrary. Indeed, we are free to consider a
reaction and not its detailed-balanced reverse one, if necessary. We see that the power of nj in
the reaction rate equation for species j and reaction α indicates the number of times it appears
as a reactant in the reaction.

Given that the deterministic part of the GLV model (15) contains a positive linear and a
negative quadratic term in nj, we consider the reaction pair

Aj

k+j
⇌
k−j

2Aj. (17)

10
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These reactions have a clear ecological interpretation as asexual reproduction in the k+ direc-
tion, and competitive death in the k− direction. By identifying the kinetic factor (14) with the
GLV model (15), we see that the pair of reactions (17) appears if we take ke−Gj/(ceqj Ω) = rj
and ke−Gj/(ceqj Ω)2 = rj/κj. This yields

κj = ceqj Ω, k+j = rj, k−j = (rjc
◦Ω)/κj.

Therefore κj is the carrying capacity of species j in the absence of interactions, rj is the birth
rate, and (rjc◦Ω)/κj is the rate of intra-species competition. These reactions are in detailed
balance.

We now consider the deterministic part which models the inter-species interactions,∑
j Sijninj. Contrary to the sum of linear and quadratic terms, which can be coupled into a

pair of reactions satisfying detailed balance, the terms Sijninj have no reason to be paired. The
reactions which give rise to the inter-species interaction term will not satisfy detailed balance,
in general. In fact, consider the reactions

Aj +Al
vjl→ 2Aj +Al (18)

Aj +Al
wjl→ 0+Al, (19)

which give a contribution to the reaction rate equation for j of the form (vjl−wjl)njnl. This
corresponds to a term ke−Gjlnjnl/(c

eq
j ceql Ω2) in (14) where therefore ke−Gjl/(ceqj ceql Ω2) = vjl−

wjl. The inter-species interaction terms in (15) are recovered if Sjl = wjl− vjl. The rates vjl and
wjl must each be nonnegative. If Sjl > 0, then (19) is needed, but (18) is not, while if Sjl < 0,
then (18) is needed, but (19) is not. Since the GLV model studied in [12, 14, 52] takes Sjl to be
random numbers with both signs, then in general both reactions are needed, and we can take

vjl = |Sjl|Θ(−Sjl)
wjl = |Sjl|Θ(+Sjl),

since then vjl−wjl = |Sjl|[Θ(−Sjl)−Θ(+Sjl)] =−Sjl as required. Here Θ(x) is the Heaviside
function. In the ecology context, the reactions (18) and (19) are interpreted as cooperative
growth and competitive death, respectively.

Finally, a spontaneous birth reaction is needed to recover the immigration term in (15)

0
λj→ Aj. (20)

We have thus found a reaction network, defined by reactions (17)–(20), whose rate
equations recover exactly the deterministic part of the GLV model (15). This completes the
first part of the mapping.

The Hamiltonian for this GLV reaction network is given by (5)

H=
∑
j

rj[e
νj − 1]

[
nj−

n2j e
−νj

κj

]
+
∑

i,( j̸=i)

Sij[e
−νi − 1]ninj

+
∑

i,( j̸=i)

vij
[
e

1
2νi − e−

1
2νi
]2
ninj +

∑
j

λj[e
νj − 1]. (21)

3.3. Langevin regime

We now consider the finite-ω regime where demographic noise plays a role. Using the reaction
network (17)–(19), we investigate under which conditions the noise term in (15) is recovered.

11
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Building on the results of section 2.2.5, the Langevin equation for the reaction system is
obtained by a small-ν expansion of the Hamiltonian (21)

H=
∑
j

rj

[
νj +

1
2
ν2
j

][
nj−

n2j (1− νj)

κj

]
+
∑
i,(j̸=i)

Sij

[
−νi +

1
2
ν2
i

]
ninj

+
∑
i,(j̸=i)

vijν
2
i ninj +

∑
j

λj[νj +
1
2
ν2
j ] +O(ν3).

We obtain the Langevin equation for the abundance of species j using equations (9)–(11)

∂tnj = rj

[
nj−

n2j
κj

]
−
∑
i ̸=j

Sjininj

+λj +

rj(nj + n2j /κj)+ nj
∑
k̸=j

[wjk + vjk]nk +λj

1/2

ξj, (22)

which resembles that of the GLV model (15), except that the noise has richer correlations.
In order to connect with recent works on the GLV model, we consider that all species have

the same birth rate and carrying capacity, rj = r and κj = κ. We perform the scaling transform-
ation

nj = κn′j , t= t′/r, wij = rw′
ij/κ, vij = rv′ij/κ, λj = rκλ′

j , ξj = r1/2ξ′j ,

under which the Langevin equation (22) becomes

∂t ′n
′
j = n ′

j (1− n ′
j )−

∑
i≠j

S ′
jin

′
i n

′
j +λ ′

j

+
1√
κ

n ′
j + n ′2

j + n ′
j

∑
k̸=j

[w ′
jk + v ′jk]n

′
k +λ ′

j

1/2

ξ ′
j , (23)

with ⟨ξ ′
j (t

′)ξ ′
k(0)⟩= δjkδ(t ′).

The GLVmodel equation (15) considered in [52, 53] is recovered assuming that the bracket
in (23) can be approximated by αn ′

j , the noise strength then being given by

2ω2 = α/κ. (24)

To the best of our knowledge, this is the first derivation of the GLV model starting from a
microscopic description. In the next section, we critically expose the assumptions underlying
such an approximation, and detail their consequences.

Before doing so, let us briefly discuss the difference between (23) and the reduced
model (15) with simplified noise. Consider (23) for a generic pair of species j and k. Sup-
pose the abundance of k is abnormally large: n ′

k≫ 1. This will affect the dynamics of species
j in two ways: first, and most directly, it will increase the rate of reactions in which these
species are reactants, i.e. increase the magnitude of the S ′

jkn
′
j n

′
k term. But secondly, and more

subtlely, it will increase the prefactor of the noise ξ ′
j . Thus species j becomes more susceptible

to noise as a result of the fluctuation in species k. This susceptibility is specific, because it is
multiplied by the corresponding ratesw ′

jk and v
′
jk. In principle, it allows for fine-tuning of states

to these noise-mediated interactions. When the noise amplitude is approximated by αn ′
j , this

susceptibility is lost.
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3.4. Regime of validity of the GLV model

The derivation of the GLV model equation (15) is not systematic because we need to justify
(a) the approximation of the noise, and (b) the small-ν expansion. We expose the conditions
under which (a) and (b) are justified, and therefore clarify the regime of validity of the GLV
model studied recently [52, 53].

To justify (a), consider first the case of infinitesimal immigration, λ= 0+. The regime of
interest is large populations, κ≫ 1. Note that the equation of motion is scaled such that n ′

j ∼ 1,
typically. For such species the noise is important when ξ ′

j /
√
κ∼ 1. Since the noise is scaled to

be of unit magnitude, if κ≫ 1, then ξ ′
j /
√
κ is small, and noise is typically irrelevant. However,

if the abundance of one species gets very small n ′
j ≪ 1, one can have n ′

j ∼
√
n ′
j /κ even for

large κ, i.e. when n ′
j ∼ 1/κ. Thus for κ≫ 1 the noise term can be approximated by its value

for n ′
j ≪ 1. In this case the bracket in (23) is approximated by

n′j

1+∑
k ̸=j

[w′
jk + v′jk]n

′
k

 .
The rates w′ and v′ are nonnegative, so in general the second term does not cancel and must
be retained. However, if we consider the large species limit N≫ 1 where all w ′

jk and v ′jk are
identically and independently distributed, say with mean s/N, then the leading term as N→∞
will be

n′j [1+ 2sn(t)+ · · · ] ,

where n(t) = 1
N

∑
k n

′
k(t) is the mean rescaled abundance. For the fluctuations to be irrelevant

we must assume that the n ′
k are not strongly correlated with w ′

jk− s/N and v ′jk− s/N. Assum-
ing all this, we obtain a noise strength of the form (24) except that α= 1+ 2sn(t) is time-
dependent. Now, if the system fluctuates around a non-equilibrium steady state, or if the total
population is explicitly fixed as in [11], then this time-dependence disappears and (i) is justi-
fied. The argument holds for finite immigration if it is subdominant in the noise, i.e. 1/κ≫ λ ′,
which is equivalent to λ≪ r.

Let us try to justify (b). As noted above, the derivation of the Langevin equation implies
that νj ∼ 1/

√
nj. A necessary condition for ν j to take only infinitesimal values is κ→∞. This

cannot be sufficient, because when n ′
j ∼ 1/κ then clearly ν j is not small. Thus the small-ν

expansion, while justified for species of typical (large) abundance, has no clear justification if
any species tends to extinction.

To summarize, for the chemical reaction network composed of reactions (17)–(20), if we
make the following assumptions (A)

(A1): k+j = r, k−j = (rc◦Ω)/κ, λj = λ

(A2): κ→∞,

then we obtain the Langevin equation (23) in rescaled variables n ′
j = nj/κ, t ′ = t r. The deriv-

ation is fully self-consistent only if all rescaled abundances are O(1), that is, there are no rare
species. In this case, the noise is typically irrelevant.

The noise becomes important if any abundance becomes small, n ′
j ∼ 1/κ. In general the

noise cannot be simplified beyond (23), except omitting the n ′2
j term. It is then necessary to

make these additional assumptions
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(A3): steady state

(A4): N→∞
(A5): λ≪ r,

in order to justify the noise amplitude approximation. If the GLV model with demographic
noise studied in the literature [52, 53] is intended to represent the macroscopic limit of the
microscopic process given by the above ‘reactions’, then the implicit assumptions which we
expose in (A1–5) are necessary for its validity. Of course, it may be possible that the GLV
model is justified by a different argument. For example, one could apply the renormalization
group to see which terms are nontrivially irrelevant in the macroscopic limit; to our knowledge
such an analysis has not been performed.

From the derivation we learn that the noise strength ω satisfies

ω2 =
1+ 2sn

2κ
,

where n is the mean dimensionless abundance, s/N is the mean of rescaled reaction rates, and
κ is the carrying capacity of the species, assumed all to be equal.

The above derivation highlights several features of the GLVmodel. First, its main limitation
is that the small-ν expansion is not justified when any species has a small population. Since
demographic noise is only important when a population is small, any phenomenology present
in the stochastic model which is absent in the deterministic model must be carefully scrutinized
to check that it is insensitive to the correlations in the noise, which are customarily neglected.
This ismore than an academic point since if noise is neglected entirely, then there is a Lyapunov
function, as discussed in section 2.2.7. With a Lyapunov function there can be no hopping
between basins, so the dynamical relevance of the multiple-attractors phase discussed in [12,
14, 52, 53] relies upon the existence of noise.

A second feature is also highlighted, namely that when the coupling Sij takes both signs, it
is a sum of non-negative and non-positive quantities, representing different physical processes.
We will get back to this point in the discussion.

3.5. Universality of the deterministic limit

While the above derivation highlights subtleties in the treatment of demographic noise, the
deterministic limit, obtained by taking κ→∞ and assuming that all rescaled abundances are
O(1), is well-motivated. We now show that it is also universal: additional reactions can be
present microscopically, without changing the GLV model.

In particular, the reactions (18) and (19) are the simplest that lead to a general asymmetric
interaction Sjl, but they are not unique. For example, we could add the symmetric reactions

Aj +Al
tjl→ 2Aj + 2Al (25)

Aj +Al
ujl→ 0 (26)

which would also end up subsumed into Sjl. They would be distinguished at the level of the full
fluctuationmatrixBij, but under the assumptions (A1-5), and truncating the small−ν expansion
at O(ν2), we will obtain again (15). This is a form of universality.

Equations (25) and (26) have an ecological interpretation in terms of cooperative repro-
duction, and cooperative death, respectively. It is possible to add even more reactions that
maintain the universal deterministic limit, but the ecological interpretation would be dubious.
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For example, Aj +Al→ m(Aj +Al) also gets subsumed into the same interaction term, but
does not have an obvious ecological interpretation for m> 2.

Insensitivity to microscopic reactions is one element of universality; others have been dis-
cussed in [13, 51].

3.6. DMFT from the Doi–Peliti integral

The DMFT for (15) was originally derived with the dynamical cavity technique [12]. Com-
plementing this, we show here that the same DMFT can be derived from the Doi–Peliti integ-
ral. Unlike the cavity method, which works directly in the large number of species N→∞
limit, our technique is more general, and highlights the essential features necessary to obtain
a DMFT.

The key advantage of treating disordered systems with dynamics is that the path integral,
which is equal to one, can be directly averaged over the disorder, without replicas [27, 39]. The
path integral has an action S given by (7), with the reaction network Hamiltonian (21). We will
initially set vij = 0 in (21), so that disorder only appears in the second term of the Hamiltonian
via the random variables Sij. We thus need to compute the disorder average (noted · ) of

e
´
t

∑
i<j[SijAij+SjiAji]

where Aij(t) = [e−νi(t)− 1]ni(t)nj(t). Following previous works, we assume that the {Sij}
are Gaussian, with mean and variance given in (16). Using standard methods, outlined
in appendix E, the disorder-averaged generating function is exactly transformed into a func-
tional of several order parameters, each a sum over contributions from each species. The order
parameters are:

P(t, t′) =
1
N

∑
i

e−νi(t)e−νi(t
′)ni(t)ni(t

′)

Q(t, t′) =
1
N

∑
i

e−νi(t)ni(t)ni(t
′)

C(t, t′) =
1
N

∑
i

ni(t)ni(t
′)

p(t) =
1
N

∑
i

e−νi(t)ni(t)

m(t) =
1
N

∑
i

ni(t),

and each is accompanied by a Lagrange multiplier, labeled ΛP(t, t ′),ΛQ(t, t ′),ΛC(t, t ′),λp(t),
and λm(t), respectively. Although C and m have a clear physical meaning in terms of time-
correlation and average of the species abundancies, the other order parameters do not have
straightforward interpretations. Any order parameter that involves ν measures the sensitivity
of abundances to fluctuations, and is therefore a type of response function. The standard, simple
response function will be obtained only in the limit of small ν, as explained below.

The final disorder-averaged generating function takes the form

Z=

ˆ
D [· · · ]e−NF

∏
j

(ˆ
Dnj

ˆ
Dνje

−Sj

)
, (27)
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where ˆ
D [· · · ] =

ˆ
DΛP

ˆ
DΛQ

ˆ
DΛC

ˆ
Dλp

ˆ
Dλm

ˆ
DP
ˆ

DQ
ˆ

DC

×
ˆ

Dp
ˆ

Dm,

and

F=−σ2

2

ˆ
t,t′

[P(t, t′)C(t, t′)+ γQ(t, t′)Q(t′, t)+ (1+ γ)C(t, t′)

× [−Q(t, t′)−Q(t′, t)+C(t, t′)]] +
ˆ
t,t′

[ΛP(t, t
′)P(t, t′)+ΛQ(t, t

′)Q(t, t′)

+ΛC(t, t
′)C(t, t′)]+

ˆ
t
[λp(t)p(t)+λm(t)m(t)− s(p(t)−m(t))m(t)],

and

Sj =−
ˆ
t
Vj + SBC,j +

ˆ
t
νj∂tnj−

ˆ
t,t′
[ΛP(t, t

′)e−νj(t)e−νj(t
′)

+ΛQ(t, t
′)e−νj(t) +ΛC(t, t

′)]nj(t)nj(t
′)

−
ˆ
t
[λp(t)e

−νj(t) +λm(t)]nj(t)+
s
N

ˆ
t
Ajj(t)+

σ2

2N
(1+ γ)

ˆ
t,t′

Ajj(t)Ajj(t
′),

and where V j is the non-interacting part of the Hamiltonian (21)

Vj(n,ν) = rj[e
ν − 1]n

[
1− n

e−ν

κj

]
+λj[e

ν − 1].

For simplicity choose SBC so that it does not depend on j. Then the single-species depend-
ence in Sj comes from r,κ, and λ. Let

W(r,κ,λ) =
ˆ

Dn
ˆ

Dν e−S(r,κ,λ) (28)

be the single-species generating function, suppressing the dependence on all the Lagrange
multipliers. Then we have∏

j

W(rj,κj,λj)

= exp

ˆ dr
ˆ

dκ
ˆ

dλ
∑
j

δ(r− rj)δ(κ−κj)δ(λ−λj) logW(r,κ,λ)


≡ exp

(
N
ˆ

dr
ˆ

dκ
ˆ

dλ ρ̃(r,κ,λ) logW(r,κ,λ)

)
,

defining the empirical density ρ̃ of the single-species parameters. If these parameters are iid,
then as N→∞, ρ̃ converges to the disorder-average density ρ (more precisely the cumulative
distributions converge). (At finite N we can consider the simpler model where all rj,κj, and λj

are independent of j.) Then we can write∏
j

W(rj,κj,λj)→ exp
(
N logW

)
= exp

(
N log

ˆ
Dn
ˆ

Dν e−S

)
(29)
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so that

Z=

ˆ
D [· · · ]exp

(
−NF+N log

ˆ
Dn
ˆ

Dν e−S

)
.

This is interesting because we have already reduced the path integral from 2N dynamical
variables to 12 dynamical variables. We did not need to assume large number of species limit
N→∞, and we did not need to make any small-ν expansion. Thus this path integral still
includes the effect of rare fluctuations and demographic noise to all orders in ν, and could
be useful to understand rare events [41]. In principle, it may be subject to other analytical
approximation methods that do not require large N.

In practice, the DMFT derivation proceeds by considering the limit N→∞, in which case
the action is proportional to N and the saddle-point method can be applied. The correlation
and response functions are then determined by saddle-point equations

P(t, t ′) = ⟨e−ν(t)e−ν(t ′)n(t)n(t ′)⟩ (30a)

Q(t, t ′) = ⟨e−ν(t)n(t)n(t ′)⟩, (30b)

C(t, t ′) = ⟨n(t)n(t ′)⟩ (30c)

p(t) = ⟨e−ν(t)n(t)⟩, (30d)

m(t) = ⟨n(t)⟩, (30e)

ΛP(t, t
′) =

σ2

2
C(t, t ′), (30f )

ΛQ(t, t
′) =

σ2

2
[2γQ(t ′, t)− 2(1+ γ)C(t, t ′)]] , (30g)

ΛC(t, t
′) =

σ2

2
[P(t, t ′)+ (1+ γ)[−Q(t, t ′)−Q(t ′, t)+C(t, t ′)]] , (30h)

λp(t) = sm(t), (30i)

λm(t) = sp(t)− 2sm(t), (30j)

where the expectation values are taken with respect to the single-species action S1

⟨O(ν(t),n(t′))⟩ ≡
{´

Dn
´

Dν e−S1O(ν(t),n(t′))´
Dn
´

Dν e−S1

}
,

for a general observable O(ν(t),n(t ′)). This reduction assumes only N→∞ with no further
assumption regarding large populations. Note, however, that evaluation of the single-species
expectation values requires evaluating a full 1D path integral over the effective fields n(t) and
ν(t).

Since it does not require large populations, this theory generalizes the DMFT obtained
previously [12], and still includes rare events. However, it has a problem: we have derived
this theory ignoring the vij terms in (21), so that Sij = wij. The distribution of wij assumed
in (16) follows that of [12]. This is equivalent to assuming wij =

1
N [s+

√
NσWij] where Wij ∼

N (0,1), i.e. ⟨Wij⟩= 0,⟨W2
ij⟩= 1. But nowwe see a problem: for largeN,wij will be dominated

by the random part, wij ≈ σ√
N
Wij, and therefore it will be negative for nearly half of the pairs,

contradicting the fact that wij ⩾ 0 (unless σ= 0).
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We face a similar problem if we begin with (21). Although we can let Sij = wij− vij take
both signs, the term involving vij will lead to the same problem. This result is not specific to
the choice of particular reactions to compose Sij. It is a simple consequence of the fact that
all the reaction rates contribute positively to the noise, so there can be no compensation from
positive and negative quantities needed for the above scaling.

It follows that to obtain a DMFT for a reaction network, with the above scaling for the
variance compared to the mean of the couplings, the aforementioned simplification of the
noise is essential. Since this requires the small-ν expansion, to complete the derivation we
now show that by expanding S1 we can recover the DMFT of [12], and the closely related one
of [11].

Ignoring terms of O(1/N), we have

S1 =−
ˆ
t,t′
[ΛP(t, t

′)+ΛQ(t, t
′)+ΛC(t, t

′)]n(t)n(t′)−
ˆ
t
[λp(t)+λm(t)]n(t)

+O(ν3)+

ˆ
t
ν(t)[−rn(t)(1− n(t)/κ)−λ+ ∂tn(t)+ n(t)λp(t)]

−
ˆ
t,t′

ν(t)χ(t, t′)n(t)n(t′)− 1
2

ˆ
t,t′

ν(t)K̃(t, t′)ν(t′)+O(ν3)

where

χ(t, t′) =−2ΛP(t, t
′)−ΛQ(t, t

′)

and where the noise kernel is

K̃(t, t′) = δ(t− t′)

[
rn(1+ 2n/κ)+λ+ nλp− n(t)

ˆ
t′′
χ(t, t′′)n(t′′)

]
+ 2ΛP(t, t

′)n(t)n(t′),

which is colored and multiplicative, in general.
Now we seek a regime in which the small-ν expansion is justified. Above we saw that the

correct scaling ansatz is n∼ κ, t∼ 1/r. We obtain the scaling of ν by equating the linear and
quadratic terms, giving νtrn∼ t2ν2K̃, i.e. ν ∼ r2κ/K̃. In K̃, we have the time-local term, scal-
ing as (1/t)rn∼ r2κ, and the nonlocal term, scaling as σ2n4 ∼ σ2κ4. The nonlocal term will
dominate if σ2κ4≫ r2κ, i.e. κ3≫ r2/σ2. Assuming this, we obtain ν ∼ r 2/(σ2κ3). Thus if
σ ∼ 1,r∼ 1, and κ≫ 1, then ν will indeed be small, and moreover the kernel will be domin-
ated by its nonlocal part

K(t, t′) = 2ΛP(t, t
′)n(t)n(t′).

We now replace K̃(t, t ′) by K(t, t ′). We will check a posteriori that the time-local response
term in K̃ is indeed subdominant.

Now perform a Hubbard–Stratonovich transformation

e
1
2

´
t,t′ K(t,t

′)ν(t)ν(t′) ∝ |detK|−1/2
ˆ

Dξ e−
1
2

´
t,t′ K

−1(t,t′)ξ(t)ξ(t′)e
´
t ξ(t)ν(t)

so that S1 is now linear in ν. Integrating ν out, we obtain the nonlocal DMFT equation

∂tn= [rn(1− n/κ)+λ− nλp + ξ]|t +
ˆ
t′
χ(t, t′)n(t)n(t′)

18



J. Phys. A: Math. Theor. 55 (2022) 474002 E De Giuli and C Scalliet

where the correlators that appear here must be determined self-consistently using (30).
Expanding the correlators in small ν we find

ΛP(t, t
′) =

σ2

2
C(t, t′)

ΛQ(t, t
′) =

σ2

2

[
−2C(t, t′)− 2γ⟨ntnt′

(
νt′ + . . .

)
⟩ξ
]

so that

χ(t, t′) =−σ2

2
[2C(t, t′)− 2C(t, t′)− 2γ⟨ntnt′νt′⟩ξ + . . .]

= σ2γ⟨ntnt′νt′⟩ξ + . . . .

For a causal solution we should have χ(t, t ′) = 0 for t ′ > t. If the average were computed using
the bare propagator, this would follow from the causality rules for the Doi–Peliti path integral
[33]. We assume that it extends to DMFT. To rewrite χ in a more convenient form, note that

ˆ
Dξ e−

1
2

´
t,t′ K

−1(t,t′)ξ(t)ξ(t′)e
´
t ξ(t)ν(t)ν(t′′)

=

ˆ
Dξ e−

1
2

´
t,t′ K

−1(t,t′)ξ(t)ξ(t′) δ

δξ(t′′)
e
´
t ξ(t)ν(t)

=−
ˆ

Dξ
δ

δξ(t′′)

[
e−

1
2

´
t,t′ K

−1(t,t′)ξ(t)ξ(t′)
]
e
´
t ξ(t)ν(t)

=

ˆ
Dξ e−

1
2

´
t,t′ K

−1(t,t′)ξ(t)ξ(t′)e
´
t ξ(t)ν(t)

ˆ
t
K−1(t, t′′)ξ(t).

This implies that ν(t ′ ′) has the same distribution as
´
tK

−1(t, t ′ ′)ξ(t) and hence

χ(t, t′) = σ2γ

〈
ntnt′
ˆ
t′′
K−1(t′, t′′)ξ(t′′)

〉
ξ

.

If we rescale ξ(t) = σn(t)ξ̃(t), we get

χ(t, t′) = σγ

〈
nt

ˆ
t′′
C−1(t′, t′′)ξ̃(t′′)

〉
ξ

.

The DMFT equation becomes

∂tnt = nt

[
1− nt− s⟨nt⟩+σξ̃t +

ˆ t

0
dt ′χ(t, t ′)nt ′

]
+λ, (31)

where ⟨ξ̃tξ̃s⟩= C(t,s). The obtained equation (31) is the same as the DMFT equation of [58],
where we identify χ as the response function.

We should check that the time-local response term in K̃ is subdominant. It scales as
(1/t)tχn2 ∼ σ2n4ν ∼ σ2κ4r2(σ2κ3)−1 ∼ r2κ. This needs to be smaller than σ2κ4, which
requires κ3≫ r2/(σ2), which certainly holds if σ ∼ 1 and r∼ 1, as assumed.

We note in passing that the DMFT can also be derived by first expanding the Doi–Peliti
action to quadratic order in ν, and then performing the random average and introducing new
variables.
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4. Using the mapping

We have found a CRNwhose large-scale behavior maps to the GLVmodel recently considered
in theoretical ecology. By doing so, we have discussed the underlying assumptions for the GLV
model to be valid. Assuming conditions under which the reduction from a CRN to the GLV
model is valid, we ask how (a) this mapping may be useful in the ecology context; and (b) how
the extensive knowledge of the GLV may find application in the study of CRNs.

4.1. From reaction networks to ecosystems

We discuss here how the CRN theory might prove useful in the ecology context. First, as
emphasized above, the existence of a Lyapunov function is a generic feature of CRNs in the
deterministic limit. For the GLV model, a Lyapunov function was known [14]; from the map-
ping we see that this is not an accident.

Second, there is debate about the correct numerical treatment of Langevin equations with
multiplicative noise [59, 60], such as the GLVmodel. In particular, [52] discusses how delicate
the treatment of the immigration reaction in numerical simulations is. The presence of an
immigration term is important to prevent extinctions. The noise, and the immigration reaction
in particular, are important when a species abundance is small. In this article, we demonstrated
that the reduction from a full path integral to a Langevin equation is not generally justified in
this regime. Thus, the GLV CRN can be used to benchmark any treatment of the Langevin
model. To this end the extensive literature on approximation and simulation of CRNs may be
useful [61–64].

Third, we showed above that one can obtain a DMFT for the GLVCRN that does not require
any assumption about large populations. This DMFT, while sophisticated, could be used to
understand rare events in ecosystems, such as extinctions, where the Hamiltonian framework
has already proved useful [65, 66].

4.2. From ecosystems to reaction networks

We now consider, conversely, what the study of the GLV model can tell us about chemical
reaction networks? A key outcome of recent works is the phase diagram of the GLV model as
a function of typical interaction s [13, 14, 58], interaction fluctuation strength σ [13, 14, 58],
interaction symmetry γ [58], and noise strength ω [52, 53].

In the limit of high disorder (large σ), some species growwithout bound and the system does
not reach a steady state. This ‘unbounded growth’ phase is however non-physical and a patho-
logy of the model. Indeed, a large variance σ implies the presence of strongly cooperative
interactions between some of the species, that are stronger than the species’ logistic satura-
tion and lead to unbounded growth. This non-physical behavior can be cured by a saturation
stronger than quadratic [58].

For smaller σ there are three dynamically stable phases, characterized by the number and
type of the attractor states. The simplest is the single equilibrium phase, which holds for large
enough noise strength ω [13, 14]. In that phase, the system relaxes toward a unique station-
ary state with fluctuating equilibrium dynamics, irrespective of the initial condition. When
decreasing further the demographic noiseω, or considering larger populations, two new phases
appear, both containing multiple attractors of the dynamics [13, 14, 52]. In these multiple-
attractor phases, the equilibrium state of the system depends on the initial condition. The most
remarkable phase is the one discovered at low ω in models with symmetric interactions γ= 1
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[52]. In this region of the phase diagram, interactions play an important role, and their dis-
ordered nature gives rise to a so-called Gardner, marginally stable, phase. This phase was first
discovered in the context of mean-field spin glasses [29], and recently shown to play an import-
ant role in the physics of jamming and amorphous materials [67–69]. In the Gardner phase,
there is an exponential (in system size) number of equilibrium states, with a hierarchical organ-
ization in configuration space. Importantly, the states are marginally stable, i.e. poised at the
edge of stability [14], and separated by arbitrarily small barriers. The presence of a fractal
landscape of marginally stable minima has profound implications on the dynamics of the sys-
tem. In spin and structural glasses, this gives rise to large responses (avalanches) to small
perturbations, aging dynamics [70], as well as rejuvenation and memory effects [71].

Let us suppose, for the sake of argument, that this phase structure carries over to large
biochemical reaction networks; later, we will take a critical stance. The prospect of a Parisi–
Gardner phase in biochemical reaction networks is tantalizing. Indeed, the notion of a land-
scape with many attractors has a long history in biology, going back toWaddington’s notion of
epigenetic landscapes [48, 72]. While many authors have argued for a multiple-attractor land-
scape in biology [37, 38, 46–48], explicit models of multiple attractors usually focus on the
simple case of two, or few, attractors. This is the case of the Schlögl model [73, 74], which is
perhaps the simplest reaction network to support multiple equilibria, andmany of its properties
can be computed exactly [74]. However, in a Parisi–Gardner phase, the number of equilibria
scales exponentially with N, and one must account for the statistics of the barriers. We are not
aware of any studies on chemical reaction networks where the notion of exponentially many
attractor states has been entertained. Therefore it is crucial to see if the GLV DMFT, where
the existence of this phase can be established, has any analogue in real CRNs.

5. Discussion: towards a new universality class of DMFT

The success of DMFT in understanding large ecosystems opens the possibility to describe the
behavior of large chemical reaction networkswith similarmethods. However, while the general
goal is clear, crucial features of chemical reactions give rise to technical obstacles to overcome.
Several of these have been alluded to above, and we add another below. Addressing them in
turn, we argue that the current ecology DMFT is inadequate to capture generic behavior in real
CRNs. This presents an important opportunity for future work.

5.1. Incompatibility with local detailed balance

In extant life, many reactions are catalyzed so that the reverse reactions rarely occur, and are
often neglected in modeling. Indeed, since life involves energy fluxes it must exist far from
thermal equilibrium and it is expected that its current state is strongly time-asymmetric, as is
now being confirmed experimentally [75, 76]. However, a complete theoretical description for
chemical reactions must include each reaction as part of a pair in local detailed balance.

We noted above that the birth–death reactions in the GLV model occur in detailed balance,
but that the interactions in general do not. Let us now ask how one could modify the DMFT
to include the reverse reactions.

Consider the reaction Aj +Al
vjl→ 2Aj +Al and let us now add the reverse reaction 2Aj +

Al
ṽjl→ Aj +Al. Local detailed balance requires that the reaction rates satisfy a constraint of

the form (12), i.e. vjl/ṽjl = e−(⃗qα−p⃗α)·G⃗. Without loss of generality we can adopt the form
from transition state theory used for CRNs (13). For the reactions with rates vjl and ṽjl, let us
denote the corresponding ‘activation energies’ as Gv

jl. For the GLV model we need also the
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reactions Aj +Al
wjl→ Al and Aj +Al

w̃jl← Al. Altogether these four reactions will contribute to the
Hamiltonian

Hij = k0e
−Gv

ij(eνi − 1)xixj + k0e
−Gw

ij (e−νi − 1)xixj + k0e
−Gv

ij(e−νi − 1)x2i xj

+ k0e
−Gw

ij (eνi − 1)xj (32)

where xi = ni/e−Gi in appropriate units. It will suffice to consider this to leading order in ν:

Hij = k0νixj
[
e−Gv

ijxi− e−Gw
ij xi− e−Gv

ijx2i + e−Gw
ij

]
+O(ν2). (33)

From here we can appreciate the problem. Earlier we combined the rates so that vij−wij takes
both signs and can therefore have a Gaussian distribution. This is not possible here, because the
reverse reactions have different powers of xi. Although for the x2i xj we could add another reac-
tion with the same factor, this is not possible with the xj reaction; physically this corresponds
to the fact that extinction reactions can never be in local detailed balance. It is thus not possible
to combine multiple reaction rates so that their combination has a Gaussian distribution.

In order to derive a true CRN DMFT, one must therefore deal with non-Gaussian distribu-
tions and average terms of the form

e
´
t e

−GvijAij (34)

over Gv
ij, where for example Aij = k0(xixj(eνi − 1)+ xj(e−νi − 1)). This is the moment-

generating function of the random variable y= e−Gv
ij , evaluated at

´
tAij. Further development

of the theory uses the cumulant-generating function

L(X) = logexp(yX) (35)

evaluated at X=
´
tAij. If ywere Gaussian, then Lwould be a quadratic polynomial in

´
tAij; this

leads to the two-time correlation and response quantities defined above. One might hope that
an appropriate distribution would lead to a finite low-order polynomial for the non-Gaussian
case. However, it is known from probability theory that no such distribution exists: there are
no distributions whose cumulant generating function is a finite polynomial of order greater
than two [77]. Thus L will have terms of all orders in

´
tAij, leading to a theory with quantities

depending on arbitrarily many different times. This appears completely intractable.
Summarizing this subsection, in a theory with local detailed balance, every reaction appears

along with its reverse. Once these reversed reactions are included in the GLV model, it is
impossible to group together multiple reactions in order for a generalized rate to have a Gaus-
sian distribution. Non-Gaussian distributions (which are necessary to respect positivity of reac-
tion rates) lead to an intractable DMFT.

5.2. Non-positivity of reaction rates

We have seen that imposing local detailed balance leads to problems because of the positivity
of reaction rates. The latter can happen even without imposing local detailed balance. Indeed,
the grouping together of multiple reactions to form an effective rate vij−wij that takes both
signs, and therefore can be given a Gaussian distribution, is a very special feature of the GLV
model. As shown above, it does not even hold beyond the leading order in ν (i.e. system
size). Thus the requirement that reaction rates are positive creates an even more fundamental
roadblock to construction of DMFT by path integrals than local detailed balance. A similar
difficulty appears in random language models, where positivity of weights leads to the same
issue, in a somewhat simpler context [78]. A solution to this problem might therefore have
many applications.
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In real ecosystems too, going beyond the Gaussian approximation is crucial to describe
purely competitive systems and overcome issues related to both positive and negative interac-
tions that arise from Gaussian distributions with finite variance.

It is worth noting that the dynamical cavity method, which can also be used to construct
DFMTs, is not subject to the same limitations on non-Gaussian distributions. The cavity
method and the path-integral method are complementary: while the former works directly
in the limit N→∞, the latter can be used at general N, and can be analyzed with the soph-
isticated machinery of the renormalization group. In previous work [79], the cavity method
was used with non-Gaussian distributions for interactions in the MacArthur resource model
[80, 81], another key model of theoretical ecology.

5.3. Absence of conserved quantities in stoichiometry

Finally, the GLVmodel, when considered as a CRN, lacks the most conspicuous feature of real
CRNs: nontrivial stoichiometry, as characterized by the stoichiometric matrix Sαj = qαj− pαj.
Since (non-nuclear) chemical reactions preserve the number of each element, stoichiometry
gives a large number of constraints on possible reactions for a given set of species. However,
it is easy to see that reactions of the form (17)–(19) cannot have conserved quantities. For
example, if A+B→ A, then B cannot carry any conserved ‘elements’. This should be com-
pared with a typical real reaction, such as Ca(OH)2 +CO2→CaCO3 +H2O, which conserves
the number of calcium, oxygen, hydrogen, and carbon atoms.

In some contexts, it can be permissible to consider chemical reactions that do not conserve
elements. In particular, in biochemistry, reactions are often expressed up to numbers of water
atoms, since water is abundant in the cellular environment. If the GLV model is to be con-
sidered as a CRN, then it too must be interpreted in a context where elements do not give
stringent conservation laws.

Work on random CRNs that feature conservation laws would thus be welcome. It was
already shown in [82] that adding conserved quantities (called moieties) to random CRNs
strongly affects the possible growth of the network.

5.4. Looking ahead

Summarizing this section, we have seen that the GLV model lacks several crucial features of
real CRNs. This of course does not mitigate the importance of the GLV model in ecology, but
instead points to its location in the phase space of DMFT as firmly in the emergent, mesoscopic
regime. Its utility there has been demonstrated: in particular, the DMFT has shown that this
nonequilibrium system can exist in different phases, and universality with respect to micro-
scopic parameters has been shown. Tackling the challenges exposed above will prove useful
to describe emergent behavior in many-species chemical reaction networks.

6. Conclusion

DMFT has recently shown its power to identify dynamical phases in a model ecosystem, the
GLV model. In this article, we explored to what extent these recent successes can help the
development of a theoretical framework for CRN, focusing on the limit of many chemical
species.

To guide the mapping between ecology and CRN at the DMFT level, we have shown how
one can construct a CRN whose infinite-size limit precisely recovers the GLV model using
the Hamiltonian formalism of CRNs. We critically discussed the conditions under which this
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limit is obtained, and also addressed the large-but-finite-system size limit in which a Langevin
description is obtained. We found that it is not possible to obtain the GLV Langevin model
without quite stringent, and in general unjustified, assumptions. Then, we showed how the
GLV DMFT can be obtained from the Doi–Peliti path integral, and again critically examined
necessary assumptions. Finally, we discussed how the GLV-CRN mapping could be used, in
both directions. Several specific features of the GLV DMFT suggest that it is not directly
applicable to real microscopic CRNs: it does not have all reactions in local detailed balance,
and there are no conserved moieties. These results suggest that new classes of DMFT should
be developed to investigate emergent behavior in CRNs, which are relevant to describe living
matter.
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Appendix A. Doi–Peliti path integral

A.1. Doi formalism

Doi [31] observed that the step operators in (2), together with associated numerical factors
nj!/(nj− pαj)!, have a natural representation in terms of bosonic creation and annihilation oper-
ators, thus connecting (2) to quantum mechanics through second quantization. The vacuum,
with no molecules, is denoted by |0⟩, and by definition satisfies âi|0⟩= 0 for all i. A molecule
of species i is created by â†i . The operators are normalized such that

âi |⃗n⟩= ni |⃗n− 1⃗i⟩, (A.1)

â†i |⃗n⟩= |⃗n+ 1⃗i⟩, (A.2)

and

[âi, â
†
j ] = δij, [âi, âj] = [â†i , â

†
j ] = 0. (A.3)

From these relations one can prove that [34]

eâi f(âi, â
†
i ) = f(âi, â

†
i + 1)eâi , (A.4)

for arbitrary functions f.
The state of the entire system is then encoded in the state vector

|ϕ(t)⟩=
∑
{⃗n}

P(⃗n, t)
∏
i

(â†i )
ni |0⟩. (A.5)
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The master equation is then equivalent to an imaginary-time Schrödinger equation

∂

∂t
|ϕ(t)⟩= Ĥ|ϕ(t)⟩, (A.6)

with a non-Hermitian quasi-Hamiltonian (or Liouvillian)

Ĥ(⃗a†, a⃗) =
∑
α

k̃α

∏
j

(â†j )
qαj −

∏
j

(â†j )
pαj

∏
i

âpαi
i . (A.7)

Notice that the entropic factors nj!/(nj− pαj)! are absent from equations (A.6) and (3).
In equation (A.7), the terms involving (â†j )

qαj straightforwardly represent the effect of each

reaction on molecule j, while those involving (â†j )
pαj are instead present to ensure that prob-

ability normalization is preserved.
Equation (A.6) is solved by |ϕ(t)⟩= eĤt|ϕ(0)⟩. The Born rule does not apply to this con-

struction. Instead, observables are extracted with the coherent state

⟨ϕ0| ≡ ⟨0|Πi e
âi , (A.8)

which satisfies ⟨ϕ0|
∏

i ni⟩= 1 for any n⃗, using equation (A.4). This implies ⟨ϕ0|â†i = ⟨ϕ0|,
since ⟨ϕ0|â†i |ni⟩= ⟨ϕ0|ni + 1⟩= 1= ⟨ϕ0|ni⟩. The expectation value of an observable O is
given by projection onto the coherent state:

⟨Ô⟩= ⟨ϕ0|Ô|ϕ(t)⟩. (A.9)

For example, for the number operator â†i âi we have

⟨ni(t)⟩= ⟨ϕ0|â†i âi|ϕ(t)⟩= ⟨ϕ0|â†i âiΣ{⃗n}P(⃗n, t)|⃗n⟩
= ⟨ϕ0|Σ{⃗n}niP(⃗n, t)|⃗n⟩=Σ{⃗n}niP(⃗n, t), (A.10)

which is indeed the expectation value of ni. Let us check normalization

Σ{⃗n}P(⃗n, t) = ⟨ϕ0|ϕ(t)⟩= ⟨0|Πi e
âi |eĤ(⃗a

† ,⃗a)t|ϕ(0)⟩

= ⟨0|eĤ(⃗a
†+1,⃗a)tΠi e

âi |ϕ(0)⟩= ⟨0|eĤ(1,⃗a)tΠi e
âi |ϕ(0)⟩. (A.11)

This will equal unity if probability is initially normalized and

Ĥ(1, a⃗) = 0, (A.12)

which is indeed satisfied by equation (A.7).

A.2. Path integral formulation

The path-integral representation is built just as in quantum mechanics. In the absence of
sources, the partition function

Z= ⟨0|eĤ(⃗a
†+1,⃗a)tfΠi e

âi |ϕ(0)⟩, (A.13)

is equal to unity Z= 1 due to conservation of probability. This is reminiscent of the De
Dominicis–Janssen field theory [39, 40]. The path integral representation is built by divid-
ing the time interval [0, tf] into N→∞ slices, and introducing the coherent state resolution
of unity at each time slice. Following this standard procedure, one obtains the path-integral
representation of the partition function [32–34]
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Z=

ˆ
Dϕ

ˆ
Dϕ∗ e−S, (A.14)

with

S=
∑
i

[
−ϕi(tf)− n0

i logϕ
∗
i (0)+ϕi(0)ϕ

∗
i (0)

]
+

ˆ tf

0
dt

[∑
i

ϕ∗
i ∂tϕi−H(ϕ⃗∗, ϕ⃗)

]
. (A.15)

Here the Hamiltonian becomes a function, evaluated on the fields ϕ⃗∗ and ϕ⃗ rather than a⃗†

and a⃗. This is for initial conditions ni(0) = n0
i ; if instead we have Poisson-distributed initial

conditions, then n0
i logϕ

∗
i (0) becomes n0

i (ϕ
∗
i (0)− 1).

The doubling of degrees-of-freedom in equation (A.15) is characteristic of dynamic
problems [34, 39, 40]. Loosely, ϕ can be considered as the classical part and ϕ∗ as the quantum
part of the concentration field [34]. However, beyond the mean-field limit, the relationship
between ϕ,ϕ∗ and the true density field is very subtle [34–37]. For example, the Langevin
equation obtained from the Doi–Peliti action in a naive semi-classical limit has imaginary
noise. This can be avoided by a Hopf–Cole transformation ϕ∗ = eν ,ϕ= ne−ν , which makes
the number operator a†a→ ϕ∗ϕ= n.

The Doi–Peliti action (A.15) is an exact rewriting of the original master equation and can
be used to obtain the behavior of arbitrary observables. It is the basis for renormalization group
treatments of reaction-diffusion and related systems, when diffusion terms are added [33, 83].

A.3. Generating function

In order to extract observables, sources are added to Z by introducing the generating function

Z(⃗z, t) =
∑
{⃗n}

zn11 z
n2
2 · · ·z

nN
N P(⃗n, t). (A.16)

The partition function is recovered for z⃗= 1, and moments are computed by derivatives at
z⃗= 1. Elgart and Kamenev [41] showed that the path integral representation of the generating
function equation (A.16) is similar to that of the partition function (no sources, z⃗= 1), with
differences only in the boundary terms

S[ϕ,ϕ∗;n, z⃗] =
∑
i

[
ϕi(0)ϕ

∗
i (0)− ziϕi(tf)− n0

i logϕ
∗
i (0)

]
+

ˆ tf

0
dt

[∑
i

ϕ∗
i ∂tϕi−H(ϕ⃗∗, ϕ⃗)

]
, (A.17)

where n is the mean trajectory. As shown by Elgart and Kamenev [41], values of z⃗ different
from unity are necessary to understand rare fluctuations.

It is convenient to consider the Hopf–Cole transformation ϕj = nje−νj ,ϕ∗
j = eνj . This is a

canonical transformation with unit Jacobian. The kinetic term in the action transforms asˆ
t
ϕ∗
j ∂tϕj =

ˆ
t
eνje−νj [∂tnj− nj∂tνj] = nj(1− νj)|

tf
0 +

ˆ
t
νj∂tnj. (A.18)

The first term can be absorbed into the boundary conditions, i.e. we now have
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S[n,ν;n, z⃗] =
∑
j

[
ϕj(0)ϕ

∗
j (0)− zjϕj(t)− n0

j logϕ
∗
j (0)

]
+
∑
j

nj(1− νj)|
tf
0

+

ˆ tf

0
dt [ν⃗ · ∂tn⃗−H(⃗n, ν⃗)]

=
∑
j

[
nj(0)− zjnj(tf)e

−νj(tf)− n0
j νj(0)+ nj(tf)(1− νj(tf))

−nj(0)(1− νj(0))]+
ˆ tf

0
dt [ν⃗ · ∂tn⃗−H(⃗n, ν⃗)]

=
∑
j

[
nj(0)νj(0)+ nj(tf)[−zje−νj(tf) + 1− νj(tf)]− n0

j νj(0)
]

︸ ︷︷ ︸
SBC

+

ˆ tf

0
dt [ν⃗ · ∂tn⃗−H(⃗n, ν⃗)] (A.19)

The particle number statistics are extracted from the generating function by contour integrals

P(m⃗, tf) =
∏
j

˛
dzj
2πi

1

zmj+1
j

Z(⃗z, tf) (A.20)

For example, from P(m⃗, tf) the marginal distribution of the jth species is

ρj(mj) =
∏
l̸=j

∑
ml⩾0

∏
k

˛
dzk
2πi

1

zmk+1
k

Z(⃗z, tf) (A.21)

=

˛
dzj
2πi

1

zmj+1
j

∏
k ̸=j

˛
dzk
2πi

1
zk

1

1− z−1
k

Z(⃗z, tf), (A.22)

where we take an integral contour |zk|> 1, for all k ̸= j. Since the zk-dependence in Z(⃗z, tf)
is restricted to a term ezkϕk(tf), we will have integrals of the form (2πi)−1

¸
dzezϕ/(z− 1) =

Res[ezϕ/(z− 1),z= 1] = eϕ so that

ρj(mj) =

˛
dzj
2πi

1

zmj+1
j

Z((1, . . . ,1,zj,1, . . . ,1), tf)

=

˛
dzj
2πi

1

zmj+1
j

Z(⃗1+ δzjêj, tf) (A.23)

where 1⃗= (1,1, . . . ,1) and êj = (0, . . . ,1,0, . . . ,0)with a 1 in the jth position, and δzj = zj− 1.
Therefore we need to know Z in the vicinity of z⃗= 1⃗.

Appendix B. Instantons

As explained in the main text, we will need the stationary points of the action, i.e. instantons.
For later use, we have ∂S/∂zj =−nj(tf)e−νj(tf), and the first variation is
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δS[n,ν;n, z⃗]

=
∑
j

[
δnj(0)νj(0)+ δνj(0)

[
nj(0)− n0

j

]
+ δnj(tf)

[
−zje

−νj(tf) + 1− νj(tf)
]]

+
∑
j

δνj(tf)nj(tf)
[
zje

−νj(tf) − 1
]
+

ˆ tf

0
dt

[∑
i

[δνj∂tnj + νj∂tδnj]− δH(⃗n, ν⃗)

]

=
∑
j

[
δnj(0)νj(0)+ δνj(0)

[
nj(0)− n0

j

]
+ δnj(tf)

[
−zje

−νj(tf) + 1− νj(tf)
]]

+
∑
j

δνj(tf)nj(tf)
[
zje

−νj(tf) − 1
]
+

∑
j

[ˆ tf

0
dtδνj∂tnj + νj(tf)δnj(tf)

−νj(0)δnj(0)−
ˆ tf

0
dtδnj∂tνj −

ˆ tf

0
dtδH(⃗n, ν⃗)

]
=

∑
j

[
δνj(0)

[
nj(0)− n0

j

]
+ δnj(tf)

[
−zje

−νj(tf) + 1
]
+ δνj(tf)nj(tf)

[
zje

−νj(tf) − 1
]]

+

ˆ tf

0
dt
∑
j

[
δνj∂tnj − δnj∂tνj −

∂H
∂nj

δnj −
∂H
∂νj

δνj

]
. (B.1)

The stationary solutions must solve

∂nj
∂t

=+
∂H
∂νj

(B.2)

∂νj
∂t

=−∂H
∂nj

(B.3)

with boundary conditions

0= nj(0)− n0
j (B.4)

1= zje
−νj(tf) (B.5)

0= nj(tf)[zje
−νj(tf)− 1]. (B.6)

These are obviously degenerate and reduce to νj(tf) = logzj, nj(0) = n0
j .

Since (B.2) and (B.3) take the form of Hamilton’s equations, they conserve H:

dH
dt

=
∂H
∂t

+
∂H
∂n⃗
· ∂n⃗
∂t

+
∂H
∂ν⃗
· ∂ν⃗
∂t

=
∂H
∂t

+
∂H
∂n⃗
· ∂H
∂ν⃗
− ∂H

∂ν⃗
· ∂H
∂n⃗

=
∂H
∂t

. (B.7)

B.1. Mean-field instantons minimize the action

Along saddle-points, the action is

Sc =−
∑
j

nj(tf) logzj +
ˆ tf

0
dt [ν⃗ · ∂tn⃗−H(⃗n, ν⃗)] . (B.8)
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Define the function f(x) = 1+ ex(x− 1) and note that the convexity inequality x− 1⩾−e−x

implies f(x)⩾ 1+ ex(−e−x) = 0. Using the form

Hα(⃗n, ν⃗) =
[
eν⃗·(⃗qα−p⃗α)− 1

]
k̃α
∏
i

npαi
i︸ ︷︷ ︸

≡Fα (⃗n)

(B.9)

we have

ν⃗ · ∂tn⃗−H(⃗n, ν⃗) = ν⃗ · ∂H
∂ν⃗
−H

=
∑
α

Fα(⃗n)
[
ν⃗ · (⃗qα− p⃗α)e

ν⃗·(⃗qα−p⃗α)− eν⃗·(⃗qα−p⃗α) + 1
]

=
∑
α

Fα(⃗n)f [ν⃗ · (⃗qα− p⃗α)]

⩾ 0,

where we are assuming that ν⃗ ∈ RN. Therefore

Sc + n⃗(tf) · log z⃗⩾ 0. (B.10)

The term in the action−n⃗(tf) · log z⃗ is used to choose observables. Aside from this term (which
has no definite sign since in general z⃗ is complex), the action is non-negative. Equality is
obtained only when for each α and each time t, we have either Fα(⃗n(t)) = 0, or ν⃗(t) · (⃗qα−
p⃗α) = 0.

Let us note that mean-field solutions correspond to νj(t) = 0,∀j, t and zj = 1∀j, in which
case Sc = 0. Thus we have shown that mean-field solutions minimize the action.

B.2. Fluctuations around instantons

The leading fluctuations around the instanton are obtained by computing the second variation
of S:

δ2S=
∑
j

[
δνj(0)δnj(0)+ δnj(tf)zjδνj(tf)e

−νj(tf) + δνj(tf)δnj(tf)[zje
−νj(tf)− 1]

−δνj(tf)2nj(tf)zje−νj(tf)
]
+

ˆ tf

0
dt [δν⃗ · ∂tδn⃗− δn⃗ · ∂tδν⃗]

−
ˆ tf

0
dt

[
∂2H
∂n⃗∂n⃗

: δn⃗δn⃗+ 2
∂2H
∂ν⃗∂n⃗

: δν⃗δn⃗+
∂H
∂ν⃗∂ν⃗

: δν⃗δν⃗

]
=
∑
j

[
δνj(0)δnj(0)+ δnj(tf)δνj(tf)− δνj(tf)

2nj(tf)
]

+

ˆ tf

0
dt [2δν⃗ · ∂tδn⃗− ∂t[δn⃗ · δν⃗]]

−
ˆ tf

0
dt

[
∂2H
∂n⃗∂n⃗

: δn⃗δn⃗+ 2
∂2H
∂ν⃗∂n⃗

: δν⃗δn⃗+
∂H
∂ν⃗∂ν⃗

: δν⃗δν⃗

]
=
∑
j

[
2δνj(0)δnj(0)− δνj(tf)

2nj(tf)
]
+

ˆ tf

0
dt [2δν⃗ · ∂tδn⃗]

−
ˆ tf

0
dt

[
∂2H
∂n⃗∂n⃗

: δn⃗δn⃗+ 2
∂2H
∂ν⃗∂n⃗

: δν⃗δn⃗+
∂H
∂ν⃗∂ν⃗

: δν⃗δν⃗

]
(B.11)
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where in the second step we evaluated this on the instanton. We can write the bulk part of this
as a Hessian operator

H =

[
−∂⃗n∂⃗nH −∂tδ̂− ∂⃗n∂ν⃗H

∂tδ̂− ∂ν⃗ ∂⃗nH −∂ν⃗∂ν⃗H

]
, (B.12)

acting in the space (⃗n, ν⃗), where (δ̂)ij = δij.

Appendix C. Langevin approximation

To develop the Langevin level of approximation, we need to expand S to O(ν2). We have

S[n,ν;n, z⃗] =
∑
j

[
nj(0)νj(0)+ nj(tf)[1− zj + νj(tf)(zj − 1)− 1

2
zjνj(tf)

2]− n0
j νj(0)

]

+

ˆ tf

0
dt

ν⃗ · ∂tn⃗− ν⃗ · ∂ν⃗H(⃗n,0)−
1
2

∑
k,l

νkνl∂νl∂νkH(⃗n,0)

+O(ν3). (C.1)

Now define Bij(t) = ∂νi∂νjH(⃗n(t),0) and note that it is positive semi-definite: for any x⃗,

x⃗ ·B · x⃗=
∑
α

Fα(⃗n)(⃗x · (⃗qα− p⃗α))
2 ⩾ 0 (C.2)

so that it has a unique positive semi-definite square root. Now perform aHubbard–Stratonovich
transformation

e
1
2

´
t

∑
i,j Bijνiνj ∝

ˆ
Dξ e−

1
2

´
t ξ⃗

2

e
´
t ξ⃗ ·B1/2·ν⃗ (C.3)

and similarly

e
1
2 zini(tf)νi(tf)

2

∝ z1/2i

ˆ
dξ1i e−

1
2 zi(ξ

1
i )

2

e(ni(tf))
1/2ziξ

1
i νi(tf) (C.4)

so that the path integral is

Z=

ˆ
Dn
ˆ

Dν

ˆ
Dξ e−S 0

BCe−
´ tf
0 dt[ν⃗·∂t⃗n−ν⃗·∂ν⃗H(⃗n,0)]e−

1
2

´
t ξ⃗

2

e
´
t ξ⃗ ·B1/2·ν⃗ . (C.5)

with

S0
BC =

∑
j

[
νj(0)

[
nj(0)− n0

j

]
+ νj(tf)

[
nj(tf)(zj− 1)− (nj(tf))

1/2zjξ
1
j

]
−1

2
logzj + nj(tf)[1− zj] +

1
2
zj(ξ

1
j )

2

]
. (C.6)

The path integral has an action linear in ν, so it can be integrated out to obtain the Langevin
equation

0= ∂tn⃗− ∂ν⃗H(⃗n,0)−B1/2 · ξ⃗ (C.7)

with boundary conditions

0= nj(0)− n0
j , 0= nj(tf)(zj− 1)−

√
nj(tf)zjξ

1
j . (C.8)

Since ξ1 ∼ O(1), from the second boundary condition we infer that nj(tf)∼ z2j /(zj− 1)2.

Moreover, since ξ⃗
1
has no dynamics, this boundary condition can immediately be applied

to eliminate the variable, to obtain
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S0
BC→

∑
j

[
nj(tf)[1− zj] +

1
2
nj(tf)(zj− 1)2

zj
− 1

2
logzj + logzj +

1
2
log(nj(tf))

]

=
1
2

∑
j

nj(tf)
(1− z2j )

zj
+

1
2

∑
j

log(zjnj(tf)). (C.9)

The logarithmic terms come from Jacobians and will be ignored in what follows, since they
are of relative importance O(logn/n). The noise has correlations

⟨ξj(t)⟩= 0, ⟨ξj(t)ξk(t ′)⟩= δ(t− t ′)δjk. (C.10)

C.1. Alternative boundary conditions

Suppose that instead of considering a generating function with zj, we instead ask for the prob-
ability that nj(t) = mj. Consider this before introducing ξ1j . The zj dependence in Z(⃗z, t) is then
fully contained in a contribution −zjnj(tf)e−νj(tf) in the action. We need˛

dzj
2πi

1

zmj+1
j

ezjnj(tf)e
−νj(tf)

=
1
mj!

(nj(tf)e
−νj(tf))mj

=
1
mj!

nj(tf)
mje−mjνj(tf). (C.11)

There is no longer any need to introduce ξ1j and the final-time boundary condition gets modified
to 0=−nj(tf)+mj, as expected. In this case we will have

S0
BC→

∑
j

[nj(tf)−mj lognj(tf)+ logmj!]

=
1
2

∑
j

log(mj)+O(1) (C.12)

where the second line uses the Stirling approximation and the boundary condition n⃗(tf) = m⃗.
A useful variation on this is to ask that at time tf the number of species j is given by nj(tf) =

mj +
√
mjξ

1, where ⟨ξ1⟩= 0,⟨(ξ1)2⟩= 1. Then we simply replace mj by mj +
√
mjξ

1 in the

previous result, and integrate against e−
1
2 (ξ

1)2 . Then to obtain the modified boundary condition
we have ˆ

dνje
νj(tf)nj(tf)

ˆ
dξ1e−

1
2 (ξ

1)2 1
√
mj

e−(mj+
√
mjξ

1)νj(tf)

=

ˆ
dξ1e−

1
2 (ξ

1)2 1
√
mj

δ(nj(tf)−mj−
√
mjξ

1)

=
1
mj

e
− 1

2

(
nj(tf)−mj√

mj

)2

. (C.13)

The dependence on nj(tf) is Gaussian, which can be useful.

C.2. Scaling with system size

In some applications it is convenient to work with concentrations rather than particle num-
bers. Moreover we noted above that H carries a factor of volume. Let H=ΩH ′ and n⃗=
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Ωc⃗, B ′ = ∂ν⃗∂ν⃗H ′. The Langevin equation becomes 0= ∂t ′ c⃗− ∂ν⃗H ′(Ωc⃗,0)−Ω−1/2B ′1/2 · ξ⃗ .
This explicitly shows that the noise appears to be sub-dominant for large systems.

Appendix D. Time-reversal symmetry

For a forward–reverse reaction pair in local detailed balance, its contribution to H takes the
form

HDB
α (⃗n, ν⃗)

= k̃+α
[
e
∑

j νj (⃗qα−p⃗α) − 1
]∏

i

npαi
i + k̃−α

[
e−

∑
j νj (⃗qα−p⃗α) − 1

]∏
i

nqαi
i

= k̃+α
[
e
∑

j νjqαj − e
∑

j νjpαj

]∏
i

(nie
−νi)pαi + k̃−α

[
e
∑

j νjpαj − e
∑

j νjqαj

]∏
i

(nie
−νi)qαi

= k0c
◦Ωe−GAα

[
e
∑

j νjqαj − e
∑

j νjpαj

][∏
i

(
nie

−νi

ceqi Ω

)pαi

−
∏
i

(
nie

−νi

ceqi Ω

)qαi
]
.

Now consider the (nonlocal in time) transformation

ν̃i(tf− t) =−νi(t)+ log(ni(t)/(c
eq
i Ω)) (D.1)

ñi(tf− t) = ni(t). (D.2)

Then ñi(tf− t)e−ν̃i(tf−t)/(ceqi Ω) = eνi(t) and eν̃i(tf−t) = ni(t)e−νi(t)/(ceqi Ω) so that

HDB
α (˜⃗n, ˜⃗ν)|tf−t = k0c

◦Ωe−GAα

[∏
i

(
ni(t)e−νi(t)

ceqi Ω

)qαi

−
∏
i

(
ni(t)e−νi(t)

ceqi Ω

)pαi
]

×

[∏
i

(eνi(t))pαi −
∏
i

(eνi(t))qαi

]
= HDB

α (⃗n, ν⃗)|t. (D.3)

Moreover ˆ tf

0
dτ ν̃j(τ)∂τ ñj(τ)

=−
ˆ tf

0
dtν̃j(tf− t)∂tñj(tf− t)

=−
ˆ tf

0
dt[−νj(t)+ lognj(t)/(c

eq
j Ω)]∂tnj(t)

= +

ˆ tf

0
dtνj(t)∂tnj(t)−

[
log(nj(t)/(c

eq
j Ω))nj(t)

]∣∣∣tf
0
+

ˆ tf

0
dt∂tnj(t)

= +

ˆ tf

0
dtνj(t)∂tnj(t)− nj(t) log

nj(t)

eceqj Ω
+ nj(0) log

nj(0)

eceqj Ω
.

Since bothH and the kinetic term are invariant up to boundary terms, the transformation (D.1)
is indeed a symmetry of the action, when all reactions are in detailed balance.

Appendix E. Derivation of DMFT for GLV

We need to compute the disorder average (noted · ) of

e
´
t

∑
i<j[SijAij+SjiAji] (E.1)
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where Aij(t) = [e−νi(t)− 1]ni(t)nj(t). Assuming a Gaussian distribution for the {Sij} the
disorder-averaged part of the action is equal to

e
´
t

∑
i<j[SijAij+SjiAji]

= e
s
N

´
t

∑
i<j[Aij+Aji]e

σ2

2N

∑
i<j

´
t,t ′ [Aij(t)Aij(t

′)+Aji(t)Aji(t
′)+2γAij(t)Aji(t

′)]. (E.2)

We have ∑
i<j

ˆ
t,t′
[Aij(t)Aij(t

′)+Aji(t)Aji(t
′)]

=

ˆ
t,t′

∑
i,j

Aij(t)Aij(t
′)−

∑
i

Aii(t)Aii(t
′)


=

ˆ
t,t′

∑
i,j

[e−νi(t)− 1][e−νi(t
′)− 1]ni(t)nj(t)ni(t

′)nj(t
′)−

∑
i

Aii(t)Aii(t
′)


=

ˆ
t,t′

N2

[
P(t, t′)C(t, t′)−Q(t, t′)C(t, t′)−Q(t′, t)C(t, t′)

+C(t, t′)2− 1
N2

∑
i

Aii(t)Aii(t
′)

]
,

where

P(t, t ′) =
1
N

∑
i

e−νi(t)e−νi(t
′)ni(t)ni(t

′) (E.3)

Q(t, t ′) =
1
N

∑
i

e−νi(t)ni(t)ni(t
′) (E.4)

C(t, t ′) =
1
N

∑
i

ni(t)ni(t
′), (E.5)

and ∑
i<j

ˆ
t,t′

Aij(t)Aji(t
′)

=
1
2

ˆ
t,t′

∑
i,j

Aij(t)Aji(t
′)−

∑
i

Aii(t)Aii(t
′)


=

1
2

ˆ
t,t′

∑
i,j

[e−νi(t) − 1][e−νj(t
′) − 1]ni(t)nj(t)ni(t

′)nj(t
′)−

∑
i

Aii(t)Aii(t
′)


=

1
2

ˆ
t,t′

N2

[
Q(t, t′)Q(t′, t)−Q(t, t′)C(t, t′)−Q(t′, t)C(t, t′)+C(t, t′)2

− 1
N 2

∑
i

Aii(t)Aii(t
′)

]
,

and ∑
i<j

[Aij(t)+Aji(t)] = N2[p(t)−m(t)]m(t)−
∑
i

Aii(t),
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with

p(t) =
1
N

∑
i

e−νi(t)ni(t) (E.6)

m(t) =
1
N

∑
i

ni(t). (E.7)

The path integral is nontrivial due to interactions between different species, represented here
by nonlinear dependence of the action on the above quantities P,Q,C,p and m. To disentangle
this dependence we introduce these named quantities as new variables in the path integral,
with corresponding Lagrange multipliers. Thus, we use

1∝
ˆ

D [· · · ]e−N
´
t,t ′ [ΛP(t,t

′)(P(t,t ′)− 1
N

∑
i e

−νi(t)e−νi(t
′)ni(t)ni(t

′))]

× e−N
´
t,t ′ [ΛQ(t,t

′)(Q(t,t ′)− 1
N

∑
i e

−νi(t)ni(t)ni(t
′))+ΛC(t,t

′)(C(t,t ′)− 1
N

∑
i ni(t)ni(t

′))]

× e−N
´
t[λp(t)(p(t)− 1

N

∑
i e

−νi(t)ni(t))+λm(t)(m(t)− 1
N

∑
i ni(t))], (E.8)

where ˆ
D [· · · ] =

ˆ
DΛP

ˆ
DΛQ

ˆ
DΛC

ˆ
Dλp

ˆ
Dλm

ˆ
DP
ˆ

DQ

×
ˆ

DC
ˆ

Dp
ˆ

Dm. (E.9)

The disorder-averaged generating function is then

Z=

ˆ
Dn
ˆ

Dνe−SBCe−
´
t

∑
j νj∂tnje

´
tH

=

ˆ
Dn
ˆ

Dνe−SBCe−
´
t

∑
j νj∂tnje

∑
i

´
t Vi(ni,νi)e

´
t

∑
i̸=j SijAij

=

ˆ
D [· · · ]e−NF

∏
j

(ˆ
Dnj

ˆ
Dνje

−Sj

)
(E.10)

where Sj,F, and V i are written out in the main text. The introduction of new quantities has
allowed us to ‘diagonalize’ the species dependence, such that it takes a product form, as seen in
the final expression for Z. This sequence of manipulations is essential to obtain a path integral
that can be evaluated with the saddle-point method.
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