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ABSTRACT
In a recent computer study, we have shown that the combination of spatially heterogeneous dynamics and kinetic facilitation provides a
microscopic explanation for the emergence of excess wings in deeply supercooled liquids. Motivated by these findings, we construct a mini-
mal empirical model to describe this physics and introduce dynamic facilitation in the trap model, which was initially developed to capture the
thermally activated dynamics of glassy systems. We fully characterize the relaxation dynamics of this facilitated trap model varying the func-
tional form of energy distributions and the strength of dynamic facilitation, combining numerical results and analytic arguments. Dynamic
facilitation generically accelerates the relaxation of the deepest traps, thus making relaxation spectra strongly asymmetric, with an apparent
“excess” signal at high frequencies. For well-chosen values of the parameters, the obtained spectra mimic experimental results for organic
liquids displaying an excess wing. Overall, our results identify the minimal physical ingredients needed to describe excess processes in the
relaxation spectra of supercooled liquids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060408

I. INTRODUCTION

The large body of experimental work1,2 characterizing struc-
tural relaxation in supercooled liquids approaching the glass transi-
tion reveals that the slow molecular motion is broadly distributed in
time.3 Correlation functions (in the time domain) or relaxation spec-
tra (in the frequency domain) demonstrate the existence of molec-
ular dynamics occurring over all timescales separating microscopic
motion (in the picosecond range) and the average structural relax-
ation time τα (about hundreds of seconds at the experimental glass
transition temperature T g).3–5 A central theme in glass transition
studies concerns the physical origin of the rapid growth of τα(T)
near T g . However, any physical explanation should also be able to
rationalize the main features of the broad distribution of relaxation
times characterizing the dynamics.6–8

Experimentally, various techniques are able to probe the ori-
entational dynamics of molecules over a broad frequency range,

such as dielectric spectroscopy,9 magnetic resonance,10 and dynamic
light scattering.11 In most molecular liquids, the structural relax-
ation is described in the time domain by a stretched (rather than
simple) exponential form. In the Fourier domain, this becomes a
peak that is broader than a simple Lorentzian, and various empir-
ical functions are used.3 In a large number of liquids, an “excess”
relaxation signal appears in addition to the main α-peak on its high-
frequency flank.12–23 It is then customary to fit this signal as an
additional contribution, or “process,” to the dynamics. Such sec-
ondary relaxation may also take different functional forms depend-
ing on the studied liquid,24,25 but quite often, it appears as an
extremely broad peak (in the frequency domain) or even a pure
power law covering many decades.14 This excess signal then resem-
bles a “wing” in a log–log representation of the spectra, which are
then very asymmetric. The presence of such a signal is observed
across a wide variety of materials comprising metallic, organic,
ionic, polymeric, and atomic glasses. The emergence of excess wings
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is therefore a reasonably universal feature of deeply supercooled
liquids.

There are several important questions related to secondary pro-
cesses in supercooled liquids. Given that the strength of the signal
is much smaller than the main α-peak (typically 1%), two generic
explanations may be considered. Either all molecules contribute by
performing motions that are about 100 times smaller than during
structural relaxation itself26 or instead a small fraction of about 1%
of the molecules undergo structural relaxation much before the bulk.
A third alternative is that secondary relaxation is caused by a slow
degree of freedom (say, some intra-molecular motion) that is dis-
tinct from the ones contributing to the α-peak, which then raises
further questions about the inter-relation between these processes.
Previous work also tried to identify how universal the shape of the
excess signal can be depending on experimental probes,27,28 the type
of molecules,24,29 and thermodynamic conditions (by, say, varying
pressure5).

A variety of physical interpretations and empirical models have
been proposed to explain the asymmetric shape of relaxation spectra.
In the simplest empirical descriptions, the structural and secondary
relaxations are described by the linear superposition of two inde-
pendent contributions.30,31 This is, of course, a valid mathematical
option, but this does not address the nature of the two relaxation
processes and even implicitly suggests that they can be considered as
stemming from independent and distinct molecular motion, which
is a questionable hypothesis.

In most models proposed to describe the glass transition of
supercooled liquids, secondary processes do not necessarily appear
at the level of the basic formulation.8 Still, there now exist a good
number of proposals regarding the microscopic origin and physical
interpretation of excess wings. In a broad first category of mod-
els, asymmetric relaxation spectra emerge when the “main” glassy
degree of freedom responsible for the α-relaxation is coupled to an
“additional” degree of freedom. In Refs. 32 and 33, for instance,
a trap model describing the structural relaxation is passively cou-
pled to an independent relaxation process, possibly representing a
local molecular process. In mode-coupling approaches, the transla-
tional degrees of freedom responsible for dynamic arrest are also
passively coupled to a second glassy process (for instance, mim-
icking the rotation of molecules) to produce more complex spec-
tra.34–39 In a very similar spirit, the coupling of two schematic
glass models was shown to produce spectra with several slow pro-
cesses,40,41 a notable difference with mode-coupling approaches
being the more reciprocal interaction between the two glassy
processes.

In a second broad family of approaches, asymmetric spectra are
directly obtained from an underlying broad distribution of relax-
ation times with an asymmetric shape. This broad distribution is
meant to describe the heterogeneous nature of glassy relaxation,
which is ascribed to static42–46 or kinetic47 underlying mechanisms.
To account for the winged asymmetric shapes of spectra in such
approaches, one needs to invoke at least one physical ingredient.
In the approach based on geometric frustration,48 large correlated
domains are more energetically suppressed than small ones due
to frustration, while they all relax via thermal activation, which
accounts for excess wings.44 In the model developed by Chamber-
lin,45,49,50 the distribution of domain sizes is symmetric, but large
and small domains relax differently,45 thus resulting in asymmetric

time distributions. In some dynamically facilitated models,51,52 the
structural relaxation emerges as a hierarchical process involving a
distribution of timescales, which is skewed toward small times, giv-
ing rise to asymmetric spectra in the Fourier domain.47 In the mosaic
(droplet) picture of the random first order transition theory,53,54 sec-
ondary processes result from fluctuations of the droplet sizes and
shapes.43 They thus induce an asymmetric distribution of free energy
barriers overcome by thermal activation. We note that the impact of
dynamic facilitation on the dynamics of the largest droplets was also
invoked in this context,55–58 but this was not related to the existence
of excess wings.

In a recent computational study,59 we investigated the equi-
librium relaxation dynamics of a simple supercooled liquid ther-
malized down to the experimental glass transition temperature T g
using the swap Monte Carlo algorithm,60–62 and we were able to
follow the relaxation dynamics of the particles over a time win-
dow of about 10 orders of magnitude. In particular, we could access
the temperature regime where excess wings are observed exper-
imentally and record the dynamics over the relevant time win-
dow as well. We demonstrated the emergence of an excess wing
in this deeply supercooled regime and observed the microscopic
particle motion responsible for the asymmetric shape of the relax-
ation spectra. Our main conclusion was that relaxation close to T g
is the result of two central physical ingredients, dynamic hetero-
geneity and dynamic facilitation. First, relaxation is initiated over
timescales much shorter than τα at a sparse population of local-
ized regions, these relaxation events being extremely broadly dis-
tributed. The dynamics is therefore spatially and temporally hetero-
geneous in this regime. These sparse relaxed regions were found
to trigger the relaxation of neighboring regions by kinetic facili-
tation. We argued that since dynamic facilitation accelerates the
relaxation of the slowest regions in the liquid, the broad relaxation
spectrum observed at high frequencies becomes compressed at low
frequencies, thus explaining the asymmetric shape of the observed
spectra.

In our previous work,59 we suggested that a simple facilitated
trap model combining these two ingredients (heterogeneity and
facilitation) should generically lead to asymmetric relaxation spec-
tra. Here, we provide a complete study of the relaxation dynamics
of the proposed model. We describe how this facilitated trap model
is actually constructed by making the simplest possible assump-
tions. We then extensively explore the parameter space. We show
that, despite its extreme simplicity, the model naturally and generi-
cally gives rise to asymmetric, winged relaxation spectra in the pres-
ence of dynamic facilitation. We also propose a microscopic anal-
ysis of the model itself, combining detailed numerical simulations
to an approximate analytic solution. Combined with our numerical
simulations,59 these results provide a simple, physically motivated
microscopic picture for the shape of relaxation spectra in deeply
supercooled liquids.

Our article is organized as follows. In Sec. II, we introduce the
facilitated trap model and dynamic observables. In Sec. III, we obtain
the relaxation spectra. We present in Sec. IV our analysis of the indi-
vidual trap dynamics to rationalize the spectral shapes. In Sec. V,
we summarize our results and discuss the microscopic picture that
explains the asymmetric winged relaxation spectra of deeply super-
cooled liquids, which emerge from our study, in relation to both
experiments and previous models.
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II. FACILITATED TRAP MODEL
In this section, we define the facilitated trap model, along with

observables employed to investigate its dynamics. We also describe
our numerical simulations of the model.

A. Original trap model
The dynamics of deeply supercooled liquids exhibits very

strong dynamic heterogeneities.6,63,64 This suggests that the super-
cooled liquid can be coarse-grained into independently relaxing
domains characterized by a local relaxation time that is broadly dis-
tributed, as illustrated in Fig. 1(a). This spatially heterogeneous view-
point is mathematically captured by the original trap model.65–73

Our computer simulations of a simple atomistic glass-forming
model has revealed the heterogeneous nature of the particle motion
that gives rise to the high-frequency part of the relaxation spectra.59

The trap model is therefore a natural starting point.
The original trap model describes the thermally activated

dynamics of N mesoscopic domains hopping between energy traps
of depth E ≥ 0, with or without any spatial structure. This descrip-
tion makes it clear that a direct connection to detailed molecular
motion in the original system is difficult. At a temperature T, the
domains escape the trap they occupy after a Poisson-distributed
relaxation time τ of mean τ0eβE, with β = 1/T being the inverse
temperature (the Boltzmann constant is set to unity) and τ0 being
a microscopic time constant, as illustrated in Fig. 1(b). Dynamic
heterogeneity is introduced through the distribution ρ(E) of trap
depths. We consider a general functional form for this distribution

ρ(E) =
α

Γ(1/α)E0
e−(E/E0)α

, (1)

with E0 being a constant energy scale and an exponent 1 < α ≤ 2
to smoothly interpolate between the exponential68–70 and Gaus-
sian65–67,74,75 distributions. Both these models have been widely stud-
ied in various contexts. Bässler and co-workers76,77 previously intro-
duced the idea of an exponent α that varies continuously in order to
perform quantitative comparisons to some experimental results.

FIG. 1. Facilitated trap model. (a) The liquid is coarse-grained as a collection of
traps of depth E distributed according to ρ(E). Hopping of a mesoscopic domain
is a thermally activated process. (b) Whenever a trap relaxes, it perturbs the energy
of all other traps by an amount proportional to Δ.

When a given domain relaxes and jumps out of its trap, it
chooses a new trap depth E′ with probability ρ(E′) without mem-
ory of the previous energy E. The resulting dynamics of the model
thus depends on two parameters: α, which specifies the distribution
ρ(E), and the temperature T. We express energies and times in units
of E0 and τ0, respectively, and consider a mean-field version with no
spatial structure or interaction between traps.

In thermal equilibrium, the probability distribution Peq(E) for
a sub-system to be in a trap of depth E at the temperature T is given
by69

Peq(E) =
ρ(E)eβE

Z(β)
, (2)

with Z(β) = ∫
∞

0 ρ(E)eβEdE being a normalization factor, which is
finite and strictly positive at all T > 0 as long as α > 1 (the expo-
nential trap model with α = 1 has instead a finite temperature phase
transition to a non-ergodic low-temperature phase68). We define the
average trap depth E(T) via E = ∫

∞
0 Peq(E)EdE.

By considering the thermally activated relaxation over dis-
tributed energy barriers, the trap model naturally gives rise to
dynamic heterogeneities. Sub-systems in shallow traps E≪ E relax
much faster than the ones stuck in deep traps with E≫ E. The
parameter α directly controls the breadth of dynamic hetero-
geneities: smaller α corresponds to broader distribution ρ(E) and
thus to much wider distribution of local relaxation times.

B. Facilitated trap model
The above model considers that sub-systems are dynamically

independent and that the motion out of a given trap does not affect
the state of the other domains. This is not true in realistic glass-
formers in which a relaxation event corresponds to a local rear-
rangement of particles, which inevitably modifies the environment
of the neighboring particles.52 Computer simulations reveal that this
effect facilitates the gradual spreading of relaxation events through
the liquid78–83 and plays an increasingly important role at low tem-
peratures84 (an opposite conclusion was reached in Ref. 80). In our
numerical investigation of excess wings, we also found that the ini-
tial relaxation in isolated locations facilitates the relaxation of nearby
regions.59

While most studies of the trap model ignore the effect of
dynamic facilitation, we note that the initial studies of the expo-
nential trap model in Refs. 69 and 70 had actually introduced such
dynamic correlation between traps. A Gaussian trap model with
dynamic exchanges between fast and slow regions was studied in
Ref. 85 to analyze the consequences of spatially heterogeneous
dynamics in supercooled liquids. More recently, Heuer and co-
workers have also included a similar effect in a lattice version of the
model in order to describe the finite-size dependence of the dynam-
ics of supercooled liquids.75,86 Here, we follow a similar philosophy
and also assume that every hopping event induces a small shift in the
depth of the neighboring traps, as illustrated in Fig. 1(b).

To simplify the analytic description of this facilitation effect,
we assume, again in a mean-field spirit, that all traps are equally
affected by hopping processes. In practice, whenever a trap relaxes,
we attempt to shift the energy of all other traps by a random amount
δE, different for each trap, uniformly distributed in the interval
[− Δ

2
√

N
, Δ

2
√

N
]: E → E′ = E + δE. The energy scale Δ controls the
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strength of dynamic facilitation (Δ = 0 gives back the original trap
model), and the scaling with N ensures that the resulting dynam-
ics scales correctly with the system size. The change in energy is
then accepted or rejected in order to leave the equilibrium prob-
ability distribution Peq(E) unchanged. This facilitation effect thus
corresponds to a drift-diffusion process of the trap depth in energy
space in an effective confining potential (in appropriate units)
Veff = −log Peq (see Sec. IV B for an analytic description). If the new
trap energy E′ is accepted, we assign a new Poisson-distributed relax-
ation time of mean eβE′ to that site. At fixed α and T, increasing
Δ corresponds to increasing the strength of dynamic facilitation.
Note that due to dynamic facilitation, the energy of a given trap can
both increase or decrease in a stochastic manner. However, since the
energy diffusion occurs in a potential Veff, the energy of traps with
a large initial depth will slowly return back to the average energy
value. We shall show below that such dynamic facilitation leads to
an average speedup of the global dynamics, which is not introduced
by hand in the formulation of the model.

C. Dynamic observables
By construction, the equilibrium distribution of energies

Peq(E) does not depend on the presence of dynamic facilitation
and is independent of Δ. Although thermodynamic properties do
not depend on Δ, we expect the dynamic relaxation to be strongly
affected by the presence of dynamic facilitation.

To investigate this effect, we define a time correlation function
to describe the dynamics of the traps. To this end, we introduce the
mean persistence p(t), which quantifies the fraction of sub-systems
that, at time t, have not escaped the trap they occupied at time
0. The persistence function monotonically decreases from one at
t = 0 to zero at long times when all sub-systems have relaxed. It is
physically equivalent to the self-intermediate scattering function at
large wavevectors, which is more typically used in off-lattice glass
models. The mean persistence p(t) can be expressed as an aver-
age of the persistence p(t; Ei) of a single sub-system starting from
an initial trap depth Ei at t = 0 over the equilibrium distribution
Peq(Ei),

p(t) = ∫
∞

0
Peq(Ei)p(t; Ei)dEi. (3)

In the absence of dynamic facilitation, the persistence of a single sub-
system can be derived exactly from the exponential distribution of
relaxation times and reads p(t; Ei) = e−te−βEi . The global persistence
can thus be computed analytically from Eq. (3). In the presence of
dynamic facilitation Δ > 0, the persistence of a single sub-system
p(t; Ei) stems from a non-trivial interplay between the activated
jump dynamics and the facilitated, diffusive, dynamics of the trap
depth in energy space and cannot be computed analytically exactly.
In Sec. IV B, we provide an approximate analytic solution for p(t) in
the presence of facilitation. The exact persistence of the facilitated
trap model is thus measured by means of numerical simulations
using

p(t) = ⟨
1
N

N

∑
i=1

pi(t)⟩, (4)

where pi(t) = 1 if the sub-system i has not escaped at time t from the
trap it occupied at time 0 and pi(t) = 0 otherwise. The brackets indi-
cate an average over independent initial conditions (trap energies)
drawn from the equilibrium distribution Peq(E).

In experiments, glassy features are often investigated, thanks
to spectroscopic techniques. In order to allow for a direct compar-
ison, we introduce a dynamic susceptibility χ′′(ω) in the frequency
domain. Following the experimental literature, we assume that the
dynamics can be described by a distribution of relaxation times
G(log τ) such that19,47,87

χ′′(ω) = ∫
∞

−∞
G(log τ)

ωτ
1 + (ωτ)2 d log τ, (5)

with ω being the frequency (up to a factor 2π) and where the double
prime indicates that we consider the imaginary part of the total sus-
ceptibility. The global persistence corresponds to the superposition
of step functions decaying from 1 to 0 when a sub-system jumps. As
a consequence, the relation G = −dp/d log t holds47 and the suscepti-
bility spectrum χ′′(ω) can be directly computed from the persistence
data,

χ′′(ω) = −∫
+∞

−∞

dp
d log t

(log τ)
ωτ

1 + (ωτ)2 d log τ (6)

for any value Δ ≥ 0. In the case Δ = 0, we directly evaluate the persis-
tence given by Eq. (3). For Δ > 0, we instead use the persistence mea-
sured in the simulations via Eq. (4). Both are then used to compute
χ′′(ω) via Eq. (6).

D. Simulations of the facilitated trap model
When Δ > 0, the persistence cannot be computed analytically

exactly from Eq. (3) and we instead use simulations and Eq. (4) to
measure the time correlation function. We provide the details of
these simulations.

First, we initialize the N trap energies by directly sampling
the equilibrium distribution Peq(E). To do so, we numerically
evaluate the cumulative probability distribution of energies Ceq(E)
= ∫

E
0 Peq(E′)dE′ on a grid of a thousand points from Emin, where

Ceq(Emin) = 10−10, to Emax, where Ceq(Emax) = 1 − 10−10, as Ceq can-
not be computed analytically for arbitrary values of α. We use a cubic
spline interpolation to construct numerically the reciprocal function
E = Ceq

−1. For each trap, we generate a random variable X from a
uniform distribution in the range [0, 1], and we assign it an initial
energy Ei = E(X).

The relaxation time of a trap of depth E is drawn from an expo-
nential distribution of mean eβE. To accomplish this, we generate a
random number X from a flat distribution in the range [0, 1] and
construct the relaxation time τ = −eβE log(X).

In the course of the simulation, when a trap relaxes, we sam-
ple the probability distribution ρ(E) defined in Eq. (1) to select its
new energy. For this purpose, we generate two random variables: X
from a flat distribution in the range [0, 1] and Y from the Gamma
distribution Γ(1 + 1/α, 1) with the shape parameter 1 + 1/α and
rate parameter 1. The resulting energy E = XY1/α is then distributed
according to ρ(E).88
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Facilitation in the model corresponds to a diffusion process in
energy space that preserves the equilibrium distribution of trap ener-
gies, which is confined to an effective potential Veff = − log Peq (in
appropriate units). To this end, we compute the difference in effec-
tive potential that a proposed shift of energy would imply, δVeff
= log(Peq(E)/Peq(E′)), and use a Metropolis filter. If δVeff < 0, we
accept the new trap energy E′. If δVeff > 0, the change is accepted
with probability e−δVeff .

To measure the global persistence given by Eq. (4), we per-
form numerical simulations for N = 100 until full decorrelation is
reached using Δ values in the range [10−4, 1]. Since the persistence
decreases by steps of size 1/N, large systems of size N = 104 are used
to resolve the persistence function at very short times, when needed.
We then combine the persistence data measured at short times in
very large systems with the data measured in smaller systems at
longer times. We typically average the persistence over 100 indepen-
dent simulations for N = 100 and 10 runs for N = 104 in order to
obtain sufficient statistics.

III. RELAXATION SPECTRA
In this section, we first report the relaxation spectra of the

trap model in the absence of dynamic facilitation for Δ = 0. We
present results for various underlying distributions of energy barri-
ers ρ(E), parameterized by α, and for different temperatures T. We
then present the effect of dynamic facilitation, characterized by Δ,
on the relaxation spectra.

A. Original trap model without facilitation
We consider the relaxation spectra of the trap model in the

absence of dynamic facilitation (Δ = 0) to illustrate the variety of
spectral shapes exhibited by the model.

We present in Fig. 2 the relaxation spectra obtained for α = 2,
1.5, and 1.1 at various temperatures. The former corresponds to the
Gaussian model, which has been studied in the past, while the lat-
ter is very close to an exponential distribution for ρ(E). In order to
highlight quantitative differences, we show the data over the same
frequency and susceptibility ranges in all cases. We also restrict the
frequencies to an experimentally relevant regime, extending over
about 14 decades. We observe that all spectra, at various α and
temperatures T, share a qualitatively similar shape: they are broad,
spanning many orders of magnitude in the frequency domain, and
are relatively symmetric around their maximum value. The broad-
ness of the spectra is a direct signature of dynamic heterogeneity and
reflects the fact that the sub-systems relax over a broad distribution
of timescales.

Yet, we note from Fig. 2 a clear quantitative evolution of the
spectra as a function of α and β = 1/T. At fixed α, the spectra shift to
lower frequencies and broaden as the temperature decreases. This is
due to thermal activation, which gives rise to longer relaxation times
and simultaneously enhances dynamic heterogeneity at low temper-
atures. The exponent α directly controls how broad the underly-
ing distribution of trap energies ρ(E) is and therefore how strong
dynamic heterogeneities are, irrespective of the temperature. While a
Gaussian distribution ρ(E) for α = 2 yields relatively narrow spectra
[see Fig. 2(a)], the almost-exponential distribution ρ(E) for α = 1.1
generates the extremely broad spectra shown in Fig. 2(c), which

FIG. 2. Relaxation spectra of the original trap model in the absence of facilitation
for different distributions of trap energies ρ(E) ∼ e−Eα

: (a) α = 2, (b) α = 1.5, and
(c) α = 1.1 and various temperatures T = 1/β. For a given value of α, the spectra
broaden and shift to lower frequencies with decreasing temperature. In addition,
the spectra also broaden moving from a Gaussian (a) to an almost-exponential (c)
distribution ρ(E) of trap energies.

extend to physically unreachable low frequencies at low tempera-
tures, for example, for β = 1.59, where the entire spectrum does not
fit the experimental frequency window.

These results confirm the salient and well-known features of the
trap model that generically leads to slow dynamics and broad relax-
ation spectra, which appear, however, relatively featureless with a
main relaxation peak in the Fourier domain. Note that the spectra
found within the trap model are very broad (the behavior at low fre-
quencies is typically slower than a power law and depends on both
α and T) and temperature dependent (so that the time temperature
superposition is not obeyed).

B. Effect of dynamic facilitation
We now investigate how the introduction of facilitation,

parameterized by Δ > 0, affects the spectral shapes. We have system-
atically investigated the effect of Δ on the dynamics for α ∈ [1, 2] and
various temperatures. We present results for well-chosen values of
α, β, and varying Δ to illustrate the variety of observed behaviors.
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We present in Fig. 3 the relaxation spectra of the facilitated
trap model for α = 2, 1.5, and 1.1. For each α, we choose a rela-
tively low temperature, for which the spectrum without facilitation
is very broad and thus for which facilitation is expected to have
a larger impact. In Fig. 3(a), we show the spectra for the Gaus-
sian model (α = 2) at an inverse temperature β = 8. The spectrum
without facilitation Δ = 0 (solid line) is broad, relatively symmetric,
and reaches a maximum at log10 ωα ∼ −14. We show the data for
Δ increasing logarithmically from 0.001 to 1 (left to right). At the
lowest Δ = 0.001, the data coincide with Δ = 0 at high frequencies

FIG. 3. Effect of dynamic facilitation, parameterized by Δ, on the relaxation spectra
with parameters: (a) α = 2, β = 8, (b) α = 1.5, β = 4, (c) α = 1.1, β = 1.55, and
(d) α = 1.5, β = 3.5.

but deviate from it below log10 ω ∼ −12. We see that low frequen-
cies are suppressed by Δ > 0, causing a compression of the spec-
trum into a peak around log10 ωp ∼ −14. The resulting peak is much
sharper than the broad hump of the underlying Δ = 0 curve. As Δ
increases, the low frequencies are increasingly suppressed, and the
resulting peak increasingly sharper, shifting to a higher ωp. The fre-
quency range over which the data coincide with Δ = 0 decreases with
increasing Δ.

The suppression of low frequencies and the emergence of a
sharper peak is a generic effect of imposing Δ > 0 in the facilitated
trap model. This is confirmed by the results in Figs. 3(b) and 3(c)
obtained with α = 1.5, β = 4 and α = 1.1, β = 1.55, respectively. They
show a similar trend to the Gaussian case in Fig. 3(a). In the three
first panels, facilitation gives rise to a sharp peak at ωp > ωα (the
latter being the location of the maximum in the Δ = 0 spectrum).
This peak shifts to higher frequencies as the strength of facilitation is
raised. On the other hand, spectra follow the underlying Δ = 0 signal
at high frequencies, resulting in a highly asymmetric spectrum, in
great contrast with the symmetric spectra without facilitation shown
in Fig. 2. Finally, we note that the effect of facilitation is more spec-
tacular at small α, where the Δ = 0 spectrum is extremely broad,
extending to unphysically small frequencies. The relative amplitude
of the peak is almost two orders of magnitude larger than the under-
lying signal at Δ = 0 in this case, while it represents about one order
of magnitude for α = 1.5 and even less for α = 2.

Finally, we show in Fig. 3(d) the spectra obtained for α = 1.5,
β = 3.5. The exponent α is the same as in panel (b), but the tem-
perature is higher, explaining why the Δ = 0 spectrum is centered
around a larger frequency log10 ωα ∼ −8. Here, a small Δ = 0.001 also
compresses the low-frequency part of the spectrum, giving rise to
a secondary peak, but the effect is, however, extremely weak. As Δ
increases, the peak clearly emerges and shifts to higher frequencies
as for the lower temperature. The comparison between panels (b)
and (d) reveals that for a given value of Δ, the effect of facilitation is
more pronounced at lower temperature and depends on both Δ and
T. This point is further addressed in Sec. IV B.

Overall, this analysis demonstrates that dynamic facilitation
compresses the low-frequency part of the relaxation spectra but
leaves the high-frequency regime unaffected. This generically gives
rise to highly asymmetric shapes composed of a relatively sharp peak
at a low frequency ωp mainly controlled by Δ and a broader shape
on the high-frequency flank controlled by the underlying distribu-
tion Peq(E) and thus by the exponent α. Whereas the high-frequency
regime of the spectra shown in Fig. 3 depends on the control
parameters, the low-frequency regime is identical with a linear fre-
quency dependence, expected when the underlying distribution of
relaxation times is bounded at large times. The linear frequency
dependence is not obeyed in the original trap model for Δ = 0.
We have not systematically investigated whether time temperature
superposition holds for the facilitated trap model, but we recall that
some models with kinetic facilitation do obey superposition, while
some others do not, the difference lying in the details of the kinetic
facilitation rules.51

IV. MICROSCOPIC ANALYSIS OF THE FACILITATED
TRAP MODEL

In this section. we investigate the dynamics of individual traps
in the presence of dynamic facilitation to rationalize the evolution of
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the relaxation spectra characterized by an emerging peak frequency
ωp and an asymmetric winged shape.

A. Origin of asymmetric spectra
We illustrate the dynamics of a single trap with and without

dynamic facilitation in Fig. 4 for α = 1.5, β = 4. In the original trap
model [see Fig. 4(a)], the time series is a succession of plateaus cor-
responding to the residence times at each given depth. As expected,
shallow traps are short-lived, while deep ones are much longer-lived.

When Δ > 0, the trap energy constantly receives energy kicks
when other traps hop. The time series is therefore composed of sharp
jumps when the energy of the probed trap is renewed, but its energy
now slowly evolves in between the jumps. The inset in Fig. 4(b) mag-
nifies these small fluctuations. The effect of a small Δ > 0 on the
dynamics of shallow traps is negligible.

We display in Fig. 4(c) the evolution of the energy for a trap
starting from a large initial depth Ei for the same parameters. In
particular, the value Ei ∼ 12 is larger than the mean energy value
E ∼ 7.2. For Δ = 0, the energy would remain constant over a typi-
cal time eβEi ∼ 1020. When Δ = 0.01, the energy slowly drifts toward
lower values, closer to the mean. From this time evolution, we
define the energy Ejump of the trap when it jumps, along with the

FIG. 4. Representative time series of a given trap depth E(t) in the absence (a)
and presence (b)–(d) of dynamic facilitation. The vertical axis is reversed so that
large E values appear as “deep” traps. While the time series (a) and (b) look similar,
the inset in (b) reveals the slow diffusion of the energy in deep traps. (c) and (d)
Time evolution of a trap starting with an energy Ei at t = 0 in the presence of
facilitation. The effect of Δ > 0 for Ei = 6 is little (c) but accelerates greatly the
dynamics of a deep trap with Ei = 12 (d), which undergoes its next jump when its
energy is Ejump at a time τjump ≪ eβEi . Data are obtained for α = 1.5, β = 4, and
Δ = 0.01.

time τjump before it jumps [see Fig. 4(c)]. Remarkably, we have that
τjump ≪ eβEi . Therefore, adding facilitation dramatically accelerates
the relaxation of deep traps. In this specific example, we also note
that τjump ≠ eβEjump . In general, we find that for large Ei, we have
τjump ≫ eβEjump(∼ 108

). This suggests that the relaxation mechanism
of the deepest traps is ruled by the diffusion of the trap depth in
energy space: the trap energy slowly diffuses until it explores low
values that allow for its relaxation.

We present in Fig. 5 scatter plots of the energy Ejump and the
time τjump at which a trap of initial energy Ei jumps. The data shown
in Fig. 5 are obtained for α = 1.5 and β = 3.5 and various Δ values.
The initial energies Ei were drawn from the equilibrium distribu-
tion Peq(E), which is centered, for these parameters, around E ∼ 5.5
and becomes smaller than 10−2 for Ei values above 10. Starting with
energies, we observe that for Δ = 0, the data trivially collapse on the
Ejump = Ei line. For very small Δ = 10−4, the data points follow the
Ejump = Ei line at low Ei < 6 and depart from it above. For the major-
ity of large Ei, we see that Ejump < Ei, confirming the trend of Fig. 4.
With increasing Δ, the data depart from the Ejump = Ei line at smaller
energies and saturate to smaller Ejump values at large Ei.

We present in Fig. 5(b) the scatter plot of the escape time τjump
from a trap of initial energy Ei. For Δ = 0, the relaxation time τjump

for a given Ei is Poisson-distributed with mean eβEi . As Δ increases,
we see that large τjump are suppressed, with a decreasing cutoff value,
mimicking the behavior of Ejump. The suppression of large escape
times is better appreciated in the distributions shown in the inset of
Fig. 5(b).

The observations in Figs. 4 and 5 qualitatively explain the shape
of the relaxation spectra presented in Fig. 3. The dynamics of shal-
low traps is essentially unaffected by facilitation. On the contrary,
the relaxation of deep traps is greatly accelerated with Δ > 0, as illus-
trated in Fig. 4(c), which effectively suppresses the long relaxation
times. Facilitation thus leaves unchanged the distribution of relax-
ation times G(log τ) at small τ but results in a compression and a
rather sharp cutoff at large τ [see the inset in Fig. 5(b)]. At fixed fre-
quency ω, the integral in Eq. (5) providing χ′′(ω) is dominated by
the behavior of the distribution G(log τ) for τ ∼ 1/ω. This explains
why the spectra with and without facilitation coincide at high fre-
quencies. Instead, at low frequencies, the compression of G(log τ) at

FIG. 5. Scatter plot of (a) the energy Ejump and (b) time τjump at which traps
of initial energy Ei jump. Data are for α = 1.5, β = 3.5 and from top to bottom
Δ = 0, 10−4, 10−3, 10−2, 10−1. The traps relax at smaller energies and timescales
with increasing Δ on average. The inset in (b) collects the data for τjump in the distri-
bution P(log10(τjump)), which confirms that large relaxation times are suppressed
by dynamic facilitation.
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large times gives rise to a similar compression at low ω in the fre-
quency domain. For example, we have log10 τjump ∼ 7 for the largest
Δ = 0.1. This translates into a sharp peak around log10 ωp ∼ −7 in the
corresponding spectrum [see Fig. 3(d)].

B. Approximate analytic description of the spectra
Next, we want to capture more quantitatively the effect of Δ

on the distribution of timescales, which is ruled by a competition
between diffusion of the trap depth in energy space and thermally
activated jumps. We propose an approximate analytic treatment
of the facilitated trap model, as the complete dynamics cannot be
solved exactly.

We seek an approximate description of the single-trap dynam-
ics before it is escaped and study the diffusion of one trap in
energy space before its escape. We define the probability distribution
P(E, t; Ei) for the energy E of a single trap at time t, starting from
the energy Ei at t = 0. This distribution follows a Fokker–Planck
equation, which can be derived from the master equation with the
appropriate Metropolis rule,

∂P
∂t
(E, t; Ei) = DE

∂

∂E
[−

d log Peq

dE
(E)P(E, t; Ei) +

∂P
∂E
(E, t; Ei)].

(7)

This describes the drift-diffusion of a single trap in the confin-
ing potential Veff = − log Peq (in units of DE) and involves a dif-
fusion constant DE ∼ Δ2Γeq (up to a numerical constant), where
Γeq(T) represents the average jump rate at temperature T. The
latter only depends on the equilibrium distribution and reads
Γeq = ∫

+∞
0 dEPeq(E)e−βE. To ensure the probability conservation, we

impose a hard-wall boundary condition

[−
d log Peq

dE
(E)P(E, t; Ei) +

∂P
∂E
(E, t; Ei)]∣

E=0
= 0 (8)

at the origin, while the initial condition is given by P(E, t; Ei)∣t=0
= δ(E − Ei).

We then come to the main approximation, which amounts to
expressing the persistence function for this process as

p(t; Ei) = e−∫
t

0 dt′Γ(t′ ;Ei), (9)

with Γ(t; Ei) being the average jump rate at time t, given by

Γ(t; Ei) = ∫

+∞

0
P(E, t; Ei)e−βEdE. (10)

We note that the approximation in Eq. (9) yields the exact solu-
tion when Δ = 0, as one recovers that p(t; Ei) = e−te−βEi in this limit.
For Δ > 0, it is only approximate as we have not described the full
distribution of jumping times of a single trap by combining energy
diffusion with Poisson-distributed relaxation times at fixed energy.
Instead, we have only characterized its dynamics by the average
jump rate Γ(t; Ei).

Still, our approximation captures the broad features observed in
the simulations of Sec. III, namely, the fact that the dynamics of shal-
low traps is unaffected, while the one of deep traps is strongly accel-
erated because they diffuse toward smaller energies. Indeed, Eq. (9)
yields p(t; Ei) ∼ e−te−βEi in the short-time limit and p(t; Ei) ∼ e−Γeqt in

the long-time limit because the distribution of single-trap energies
tends to the equilibrium distribution Peq when t → +∞, by virtue of
Eq. (7). The characteristic timescale for this crossover is given by the
typical diffusion timescale over an energy range of order 1, namely,

τΔ ∼ 1/DE ∼ Δ−2Γ−1
eq (T), (11)

which depends both on Δ and T. This means that traps with
eβEi ≪ τΔ are unaffected by the diffusion process and relax as when
Δ = 0. For these traps, the typical diffusion timescale is too large
and they relax by thermal activation before their energy can sig-
nificantly diffuse. Instead, deep traps with eβEi ≫ τΔ have ample
time to explore lower energies and thus jump faster, with a typ-
ical timescale controlled by τΔ. As τΔ ∼ Δ−2, the crossover energy
between these two limits becomes smaller for larger Δ, in agreement
with the scatter plots in Fig. 5.

Moving to the average persistence in Eq. (3), it follows that its
time decay is unaffected by facilitation when t ≪ τΔ while it decays
very sharply toward 0 for t ≫ τΔ for Δ < 1. Physically, the ratio
τeq/τΔ quantifies the effective strength of the dynamic facilitation,
with τeq = ∫

+∞
0 Peq(E)eβEdE being the auto-correlation time of the

Δ = 0 trap model. This ratio trivially increases with Δ at constant
temperature. More interestingly, for a fixed value of Δ, this ratio also
increases with decreasing temperature. This shows that Δ itself does
not uniquely characterize the strength of facilitation in the system.

To assess the quality of our approximate description of the
dynamics, we solve Eq. (7) analytically for the Gaussian case α = 2
for which a closed formula for the jump rate Γ(t; Ei) in Eq. (10) can
be derived, as this represents a solvable Ornstein–Uhlenbeck process
in energy space.89 Figure 6 shows the resulting spectra for different
values of Δ at inverse temperature β = 8. As Δ increases, we observe
the same trend as the simulation results presented in Fig. 3(a), even
though the quantitative agreement is not exact, due to the approx-
imation involved in Eq. (9). This suggests that our approximation
correctly captures the interplay between dynamic heterogeneity and
dynamic facilitation, which accounts for the shape of the relaxation
spectra in the facilitated trap model and their evolution with the
control parameters.

Our approximate solution reveals the existence of a diffusive
timescale τΔ in Eq. (11), which controls the relaxation of the deepest
traps, and provides a terminal cutoff to the distribution of relaxation

FIG. 6. Relaxation spectra for the facilitated Gaussian trap model (α = 2 and
β = 8) obtained from our approximate solution of the dynamics, solving Eqs. (3),
(6), and (9). The broad feature of the direct simulations in Fig. 3(a) is correctly
reproduced (see the direct comparison for Δ = 0.01).
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FIG. 7. Evolution with Δ of the relaxation time τp = 1/ωp, with ωp being the loca-
tion of the peak in the relaxation spectra χ′′(ω) for various sets of parameters:
(α, β) = (2,8), (1.5,3.5), (1.1,1.55). Closed symbols are from direct simulations,
and open symbols are from the analytic approximation. The data are correctly
described by an effective power law dependence: τp ∼ Δ−γ, with γ ∈ [1.45, 1.85].

times, which controls the linear behavior of χ′′(ω) at low frequency.
We thus analyze in Fig. 7 the dependence of the relaxation time
defined as τp = ω−1

p , as a function of Δ in the simulations of the trap
model. The open symbols correspond to the approximate analytic
solution. In the range of Δ investigated, we find that τp ∼ Δ−γ with a
fitted exponent γ ∈ [1.45, 1.85], depending on the parameters (α, β)
of the model. The measured exponent γ increases slightly when mov-
ing from the Gaussian model α = 2 to α = 1.1. The exponent remains
slightly smaller than prediction γ = 2 emerging from the diffusive
timescale τΔ [see Eq. (11)]. The difference probably stems from the
fact that the spectrum is an averaged quantity receiving contribu-
tions from all traps, including the ones that are less affected by facili-
tation. This interpretation is confirmed by our approximate analytic
solution where the clear presence of the diffusive cutoff nevertheless
results in an effective exponent γ ∼ 1.7, different from 2.

V. DISCUSSION
We constructed and analyzed a simple version of a facilitated

trap model, which combines dynamic heterogeneity and kinetic
facilitation, recently identified as the two key ingredients explain-
ing the asymmetric relaxation spectra in deeply supercooled liq-
uids.59 We showed that the model generates asymmetric relax-
ation spectra, composed of a sharp peak at low frequencies, and a
much flatter and broader high-frequency signal. This shape qualita-
tively resembles the dielectric spectra of deeply supercooled liquids.
Because there are no internal microscopic degrees of freedom inside
traps, the obtained spectra lack the microscopic peak exhibited by
experimental data in the THz region.

In Fig. 8(a), we reproduce the common interpretation of relax-
ation data generated from the present facilitated trap, where a fit
to the main α-peak reveals the existence of an additional “excess”
signal at high frequencies—the excess wing. Based on our results,
we propose a different interpretation of the same spectrum, shown
in Fig. 8(b). The self-induced heterogeneity90 of the supercooled
liquid produces a broad distribution of activation timescales, or,
equivalently, a broad spectrum (blue line). The measured spec-
trum does not correspond to this underlying distribution because
the relaxation of the fastest regions facilitates the relaxation of the
slow regions. As a result, the low-frequency part of the underlying
spectrum becomes compressed in the presence of facilitation, thus

FIG. 8. Two interpretations of the same relaxation spectrum. (a) In the common pic-
ture, an empirical fit to the α-peak reveals an “excess wing” in the high-frequency
range (shaded), highlighted by the dashed line. (b) In our picture, a broad underly-
ing distribution of timescales (blue line) becomes compressed at low frequencies
by dynamic facilitation (arrow). Some of the α-peak then appears in “excess”
(shaded) of the intrinsic spectrum. Symbols correspond to α = 1.1, β = 1.59, and
Δ = 0.1.

producing an asymmetric shape [see Fig. 8(b)]. Somewhat provoca-
tively, we might say that in this picture, the α-peak appears in
“excess” of a much broader underlying time distribution, while the
excess wing, in fact, reveals the intrinsic shape of the relaxation
spectrum.

The facilitated trap model is an empirical model based on sim-
ple, physically motivated, ingredients. This is not a microscopic
model, and it even lacks any spatial structure. As such, the scope of
the model is to describe the essence of the asymmetric spectra, rather
than to provide a quantitative description of any kind of data.

It is, however, tempting to push the model to its limits to gen-
erate relaxation spectra that resemble experimental data as closely
as possible. We report in Fig. 9(a) the dielectric loss of supercooled
glycerol at various temperatures down to the glass transition tem-
perature T g , reproduced from Ref. 91. We clearly identify a main
α-peak, which shifts to lower frequencies with decreasing temper-
ature, as well as an “excess wing,” which seems to flatten as the
temperature decreases. We report in Fig. 9(b) the relaxation spec-
tra of the facilitated trap model for a fixed α = 1.1, obtained for
various values of β and Δ. The model yields spectra that are in
semi-quantitative agreement with experimental measurements. The
temperature variation of the excess wing is, in particular, simply
reproduced by changing T at constant α. The value of Δ, on the other
hand, was adjusted to obtain the correct location of the main α-peak.
Although the obtained Δ values decrease as T decreases, the effect of
facilitation, as quantified by the ratio τeq/τΔ (see Sec. IV B), steadily
increases toward low temperatures by several orders of magnitude.
Therefore, by constraining our model to yield a semi-quantitative
agreement with experimental data, we conclude that the effect of
dynamic facilitation becomes stronger at lower temperatures, which
is fully consistent with our recent atomistic simulations.59

There are some differences between the experimental data and
results from the facilitated trap model in Fig. 9. First, the excess wing
obtained with the trap model is not a pure power law, as reported
in experiments14 (but this is also a debated issue4,91). Strictly speak-
ing, it corresponds to the high-frequency part of a very broad and
very flat relaxation spectrum. However, since the observed wing
extends over at most a few decades, it may be well-fitted by a power
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FIG. 9. (a) Frequency dependence of the dielectric loss (relaxation spectrum) in
glycerol at various temperatures (data from Ref. 91). (b) Relaxation spectra of the
facilitated trap model for ρ(E) ∼ e−Eα

, α = 1.1, various temperatures 1/β, and
values of Δ. By combining dynamic heterogeneities and dynamic facilitation, the
model qualitatively reproduces the experimentally observed behavior.

law. Another difference lies in the crossover between the relaxation
peak and the high-frequency spectrum, which is quite marked in the
model, while it appears much smoother in experiments. This sharp
crossover may be partially explained by the lack of spatial resolution
of the model, which may miss some of the heterogeneity present in
real liquids.

Our work demonstrates that a simple model combining
dynamic heterogeneity and kinetic facilitation generically produces
relaxation spectra that compare well with experimental and numer-
ical findings. Since the ingredients of the model are directly moti-
vated by a microscopic analysis of simulation results,59 we can crit-
ically revisit the assumptions made in alternative models. First, the
linear superposition of two processes provides the misleading pic-
ture of distinct and independent molecular motions in the α-peak
and in the excess wing. In our model, there are not two distinct
types of dynamics as the asymmetric spectrum emerges from a sin-
gle type of relaxation events. Second, our approach suggests that a
coupling between distinct glassy degrees of freedom is not needed
to produce excess wings and complex spectra. Excess wings instead
emerge in the facilitated trap model and in the atomistic simulations
from a single type of glassy degree of freedom. As a consequence,
excess wings appear as an intrinsic feature of slow dynamics near
T g . Third, our results clearly favor the interpretation of asymmetric
spectra in terms of a single asymmetric distribution of timescales.
The key role played by kinetic facilitation in our argument is difficult
to reconcile with the thermodynamic nature of the geometric frus-
tration argument proposed in Ref. 44. Our model appears closer in
spirit to the one proposed by Chamberlin45,49,50 in which a symmet-
ric underlying distribution (of domain sizes45) relaxes in a peculiar

manner, whereby the relaxation time of the large domains saturates
to a finite limit. This is mathematically consistent with the satura-
tion effect reported in the scatter plots in Fig. 5 for the facilitated
trap model, even though the kinetic argument used by Chamberlin
appears physically unrelated from dynamic facilitation. Finally, our
conclusions regarding the central role played by dynamic facilitation
to account for excess wings are obviously consistent with the results
obtained with kinetically constrained models47 and the qualitative
argument proposed in Ref. 55 to account for the relative narrowness
of the α-peak. In all these pictures, the excess wing at high-frequency
appears to result from the full decorrelation of a small fraction of the
system, rather than the small motion of the entire system advocated
in some NMR studies.26

In future work, it would be interesting to develop more real-
istic coarse-grained models of structural relaxation in supercooled
liquids. An obvious step would be to develop a version of the facil-
itated trap model with a spatial structure to understand better the
nature of the spatially heterogeneous dynamics in the presence of
dynamic facilitation, in the spirit of Refs. 75 and 86. It would also be
interesting to characterize better the specific nature and geometry of
dynamic facilitation in computer simulations,59,84 especially at very
low temperatures that can now be simulated more easily, thanks to
the swap Monte Carlo algorithm.
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