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Abstract.  It was recently demonstrated that a simple Monte Carlo (MC) 
algorithm involving the swap of particle pairs dramatically accelerates the 
equilibrium sampling of simulated supercooled liquids. We propose two 
numerical schemes integrating the eciency of particle swaps into equilibrium 
molecular dynamics (MD) simulations. We first develop a hybrid MD/MC 
scheme combining molecular dynamics with the original swap Monte Carlo. We 
implement this hybrid method in LAMMPS, a software package employed by a 
large community of users. Secondly, we define a continuous time version of the 
swap algorithm where both the positions and diameters of the particles evolve 
via Hamilton’s equations of motion. For both algorithms, we discuss in detail 
various technical issues as well as the optimisation of simulation parameters. 
We compare the numerical eciency of all available swap algorithms and 
discuss their relative merits.
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1.  Introduction

Simulations are a useful tool to understand the equilibrium properties of supercooled 
liquids approaching a glass transition [1]. They oer microscopic insight into static and 
dynamic properties for well-defined and usually quite simple model systems. A major 
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obstacle in this approach is the diculty of simulating large enough timescales in order 
to get closer to experimentally-relevant studied materials. Recently, the gap between 
simulated timescales and experimental ones has been closed [2, 3] using a simple Monte 
Carlo (MC) scheme, where ordinary translational moves of the particles (that mimic 
the physical dynamics) are complemented by the swap of unlike particle pairs [4, 5]. 
The method is thus broadly applicable to models composed of discrete or continuous 
mixtures of distinct particles. In practice, this encompasses virtually all types of glass-
formers [1].

While having many advantages, such as simplicity and eciency, Monte Carlo 
is not necessarily the most commonly used simulation technique for supercooled liq-
uids. Molecular dynamics (MD) techniques are often preferred, because the microscopic 
dynamics is closer to that of real molecular fluids [6]. For colloidal particles, Brownian 
dynamics may be more adapted. For several models of supercooled liquids, the equiva-
lence of all these dierent microscopic dynamics to those of MC simulations is fully 
established [7–10]. This implies in particular that the chosen numerical method to sim-
ulate supercooled liquids is essentially one of personal convenience. Since particle swaps 
were first introduced in the context of MC studies [2, 5], it is natural to ask whether it 
is possible to extend the method in the more general context of MD simulations.

One potential advantage of MD simulations is that they are easier to parallelize than 
MC techniques, mainly because the positions of the particles are all updated simulta-
neously in MD rather than sequentially in MC. This makes simulating large systems 
prohibitively slow when using MC simulations. Although spatial correlations remain 
relatively modest in supercooled liquids [1, 11], larger and larger systems are required 
to analyse the deeply supercooled states that swap MC simulations can now potentially 
access [12–15]. It is therefore natural to ask if it is possible to introduce swap moves 
into molecular dynamics, a simulation method which is readily parallelized.

As a first step we consider a hybrid MC/MD simulation scheme where blocks of 
swap Monte Carlo moves are inserted at regular time intervals into a conventional 
molecular dynamics simulation. This method has already been used long ago [4], in a 
dierent context. We show how to best tune the parameters of this hybrid technique to 
obtain maximum eciency, and carefully discuss the numerical eciency of the tech-
nique. We implement the method into the LAMMPS open software for MD simulations 
[16]. In a second eort, we implement a continuous time version of the swap MC into 
a generalized MD scheme where both the positions and the diameters of the particles 
obey Newton’s equations of motion for a suitably defined Hamiltonian. This second 
scheme bears similarities with semi-grand MC techniques for polydisperse fluids [4, 17, 
18]. When properly optimised, we find that all three simulations techniques provide 
essentially the same (potentially very large) speedup over conventional MD and MC 
techniques, so that again the choice of one swap algorithm over another is mostly one 
of personal convenience.

This article is organised in the following way. In section 2, we discuss the hybrid 
MC/MD method: numerical scheme, details of the studied models, thermalisation 
speedup. These results are of general interest and do not depend on the specific imple-
mentation of the algorithm. We then present the computational eciency obtained 
with our implementation of the method in the LAMMPS package. In section 3, we 
present the continuous time version of the swap algorithm. The relative merits of all 
swap algorithms are discussed in section 4.

https://doi.org/10.1088/1742-5468/ab1910
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2. Hybrid MC/MD method

2.1. Microscopic model

We study numerically a system composed of N polydisperse particles of identical masses 
m in a cubic box of linear size L with periodic boundary conditions. The system is 
defined by the 3N particle position coordinates rN = {r1, r2, . . . , rN}, and the particle 
sizes σN = {σ1, σ2, . . . , σN}.

Two particles i �= j at a distance rij = |ri − rj| interact only if rij < 1.25σij. We 
model the interactions between particles via a soft repulsive pair potential

u(rij, σij)/ε =

(
σij

rij

)12

+ F (rij, σij) ,

where F (rij, σij) = c0 + c2

(
rij
σij

)2

+ c4

(
rij
σij

)4�

(1)

is a function that smooths the potential at the cuto distance 1.25σij. The coecients 
c0, c2, and c4 ensure the continuity of the potential up to the second derivative at the 

cuto. The total potential energy of the system is U(rN , σN) =
∑

i<j u(rij, σij). In order 
to obtain a good glass-forming model, we study a continuously polydisperse system. 
The particle diameters follow the distribution P (σm � σ � σM) = A/σ3, where A is a 
normalizing constant, σm = 0.73 and σM = 1.62. To ensure the structural stability of 
the polydisperse mixture, we employ a nonadditive interaction rule for the cross diam-

eters σij =
σi+σj

2
(1− 0.2|σi − σj|), following previous work [3]. Lengths and times are 

respectively expressed in units of σ =
∫
σP (σ)dσ and 

√
ε/mσ2. In the following, we 

present results for this model at number density ρ = N/L3 = 1, mostly for N  =  1500. In 
section 2.7, we study systems with larger sizes to check the scalability of the algorithm 
with system size.

2.2. Hybrid scheme

We introduce the hybrid scheme used to simulate the glass-forming model presented in 
section 2.1. The method consists of alternating between ordinary molecular dynamics 
simulation sequences during which the particle positions evolve with a fixed particle 
size, and particle-swap Monte Carlo sequences during which the particles exchange 
their sizes at fixed positions. The hybrid method is illustrated in the schematic diagram 
of figure 1.

The trajectories of particles in the MD blocks are generated in the canonical ensem-
ble (NV T ) by integrating Nosé–Hoover chain equations of motion [19–22]. We use a 
chain of thermostats of length three. The time integration of the equations of motion 
is performed by a time-reversible measure-preserving Verlet algorithm, with a time 
discretization dt  =  0.01 [23]. The damping parameter associated to the heat bath vari-
ables is equal to 1. The particles’ positions and velocities are evolved during sequences 
of duration tMD. This defines the MD blocks. At the end of each MD block, the time 
is paused, and the particle positions and velocities are frozen. A series of particle-swap 
Monte Carlo moves are then performed, and this defines a swap Monte Carlo (SMC) 
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block. These blocks are composed of Nswap attempted elementary swap moves. During 
each elementary move, two particles are chosen randomly and the exchange of their 
diameters is accepted or rejected based on the Metropolis criterion. The swap moves 
preserve detailed balance and guarantee an equilibrium sampling of phase space in the 
NV T  ensemble. The length of the swap Monte Carlo blocks is defined in a system-size 
independent way through nswap = Nswap/N .

We combine the parameters tMD and nswap together as

ρswap =
nswap

tMD

,� (2)

which represents the density of particle-swap Monte Carlo moves per particle and unit 
MD time. In the following, we will study how the parameters tMD and nswap aect 
the eciency of the algorithm. In particular, we will study the competition between 
the thermalisation speedup oered by the swap moves and the additional CPU time 
entailed by the addition of swap MC blocks.

We have implemented the hybrid scheme into the LAMMPS open software, because 
it is widely used and versatile. We have already used this method to study other model 
systems, such as Lennard–Jones and its truncated Weeks–Chandler–Andersen version 
[24–26]. Very deeply supercooled states have been successfully obtained for all these 
models. Details about how size polydispersity is handled and other LAMMPS-specific 
details are presented in appendix A.

2.3. Proper sampling of the canonical ensemble

In the previous section, we presented the hybrid scheme as a succession of molecu-
lar dynamics and swap Monte Carlo blocks. Inside each block, the dynamics (MD or 
MC) is carefully designed to sample the canonical NV T  ensemble. However, given the 
dierent nature of both algorithms, we need to ensure that the combination of both 
methods continues this equilibrium sampling.

In the hybrid method, the MD simulation is regularly interrupted to perform parti-
cle-swap moves. In the MD blocks, both the potential and kinetic energies fluctuate. By 
contrast, the SMC blocks only aect the potential energy of the system, since only the 
diameters of particles are changed, at fixed positions and velocities. As a new MD block 

Figure 1.  The hybrid scheme consists of a regular succession of blocks of molecular 
dynamics simulations and blocks of particle-swap Monte Carlo steps. Every tMD, 
the molecular dynamics is paused and nswap swap Monte Carlo steps are performed, 
which are not counted in the total elapsed MD time.

https://doi.org/10.1088/1742-5468/ab1910
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starts, the particles have the same positions and velocities as in the previous MD block, 
but they now possess a dierent potential energy. It takes a short but finite time (of the 
order t ∼ 0.1) for the kinetic energy to relax after the SMC block has been performed. 
As a result, MD blocks cannot be made arbitrarily short. When hybrid simulations are 
run with tMD < 0.1, we have found that the system heats. In the limit tMD = dt, which 
amounts to alternating MC and MD at each integration step, the kinetic energy is up 
to 3% higher than the imposed temperature and the Nosé–Hoover thermostat does not 
work properly.

However, when the hybrid simulations are run with tMD > 0.1, the probability dis-
tributions of the potential and kinetic energies follow the canonical ones, and coincide 
with those obtained from standard NV T  simulations without the SMC blocks.

2.4. Equilibration speedup

In this section, we study the equilibrium dynamics of the model presented in section 2.1 
simulated with the hybrid method.

We first run equilibration simulations during which we monitor the evolution of the 
potential energy U and the structure factor of the liquid, to detect aging eects and 
instabilities of the homogeneous fluid. When equilibrium is reached, we compute the 
self-part of the intermediate scattering function

Fs(k, t) =

〈
1

N

∑
j

eik·[rj(t)−rj(0)]

〉
.� (3)

We spherically average over wavevectors of magnitude k  =  7.0, which corresponds to 
the first diraction peak in the static structure factor of the liquid. The brackets indi-
cate averages over independent equilibrium configurations. We do not insist that times 
are taken immediately or long after the Monte Carlo swap moves. Following common 
practice, we define the structural relaxation time of the liquid τα as the time at which 
Fs(k, τα) = e−1.

We study the influence of gradually adding SMC blocks to standard MD simula-
tions. We compute the equilibrium relaxation time of the liquid varying temperature 
and swap density ρswap and report the results in figure  2. For ρswap � 0.1, we use 
tMD = 0.1, and dierent lengths nswap for swap blocks. To access the lowest density 
of swap ρswap = 0.01, we use instead tMD = 1. The resulting swap density ρswap then 
varies from 0.01 to 100. Conventional molecular dynamics simulations correspond to 
ρswap = 0.

For standard molecular dynamics, the relaxation time of the liquid increases sharply 
as temperature decreases. We evaluate empirically TMCT ≈ 0.1 through a mode-coupling 
theory power-law fit to the relaxation time data [27]. In practice, the numerical study 
of equilibrium supercooled liquids with molecular dynamics simulations are confined to 
temperatures above TMCT, as the relaxation time near TMCT corresponds typically to 
the maximal computer time accessed in conventional MD. As such the mode-coupling 
temperature crossover TMCT is a useful temperature scale in the context of computer 
simulation studies of supercooled liquids.

The situation changes gradually as ρswap increases. For low values ρswap = 0.01− 0.1, 
the relaxation time of the system at high temperature is equal to that of the standard 

https://doi.org/10.1088/1742-5468/ab1910
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MD simulation. In this regime, the dynamics is not slow enough to be aected by the 
addition of a small number of swap moves. Around TMCT and below, the addition of 
short SMC blocks becomes key to observing the liquid relax in numerically accessible 
timescales. Strikingly, equilibrium is easily reached at T < TMCT with a density of swap 
as small as ρswap = 0.01, i.e. when only 1% of the N particles are swapped per unit time. 
As the swap density ρswap increases, the relaxation time departs more strongly from the 
one obtained with pure MD simulations.

For large swap densities such as ρswap = 100, the dynamics are aected so much 
that the high-temperature Arrhenius behaviour of the normal dynamics now persists 
almost down to TMCT, before eventually increasing with a super-Arrhenius law at lower 
temperatures. We find that the hybrid method can achieve thermalization of super-
cooled liquids down to 0.6TMCT. We point out that figure 2 resembles results obtained 
with the swap Monte Carlo method, in which the role of ρswap was played by the prob-
ability, p , to perform a particle-swap move over a translational move [28]. This sug-
gests a close correspondence between ρswap in the hybrid method and p  in the original 
swap MC method, which we explore further in section 2.6.

In order to optimize the hybrid method, we investigate the separate influence of the 
parameters nswap and tMD on the thermalization speedup of supercooled liquids. We 
select three temperatures of interest, one above TMCT and two below: T  =  0.105, 0.085, 
and 0.062. For each temperature, we report the relaxation time τα measured with the 
hybrid simulations at dierent nswap and tMD in figure 3. Each data set corresponds to a 
fixed duration tMD of the MD blocks, so that increasing ρswap corresponds to increasing 
the duration nswap of the SMC blocks.

The qualitative evolution of the relaxation time with swap density is similar at 
all temperatures. Starting from the limit ρswap = 0 (conventional MD simulations), τα 
decreases with the swap density, roughly as τα ∼ 1/ρswap [3]. At T = 0.085, 0.062, this 

100
10
1

0.1
0.01

ρswap = 0

1/T

τ α

20151050

105

103

101

10−1

Figure 2.  Evolution of the equilibration time τα with inverse temperature 1/T in 
hybrid MD/MC simulations of the three-dimensional soft polydisperse model of 
section 2.1 at number density 1. The swap density ρswap is varied between ρswap = 0 
(ordinary molecular dynamics) and ρswap = 100. The dynamics at intermediate 
ρswap smoothly interpolates between these two limits.

https://doi.org/10.1088/1742-5468/ab1910


Ecient swap algorithms for molecular dynamics simulations of equilibrium supercooled liquids

8https://doi.org/10.1088/1742-5468/ab1910

J. S
tat. M

ech. (2019) 064004

behaviour is observed over a few decades of ρswap. At large ρswap, all curves saturate 
to a plateau value: increasing the length of SMC blocks at fixed interval tMD does not 
speedup further the dynamics. Indeed, as nswap increases more particle-swap attempts 
are performed in a SMC block. But since the particles’ positions are frozen during such 
SMC blocks, the saturation of τα reflects the thermalization of the particles’ diameters 
within a frozen configuration. At a given temperature, the plateau value at larger ρswap 
depends on tMD: the longer tMD, the higher τα is at the plateau. Since molecular dynam-
ics is inecient at relaxing the structure of the liquid in this temperature regime, lon-
ger MD blocks do not help speedup the structural relaxation. We emphasise that MD 
blocks are nonetheless essential to the hybrid method, since swap moves and particle 
displacements work hand in hand to decorrelate the structure of the liquid [3].

The optimal value tMD = 0.1 emerges from optimizing the physical eciency (see 
figure  3) of the hybrid simulation which requires a small tMD value, together with 
the constraint that tMD must be large enough for a proper sampling of the canonical 
ensemble (see section 2.3).

2.5. Eciency of the hybrid method on a single CPU

In this section, we focus on the eciency of the hybrid method executed on a single 
CPU. More specifically, we are interested in quantifying the competition between the 
added CPU cost due to increasing the number of swap moves and the speedup in 
thermalisation oered by the swap moves observed in figure 2. Such results, therefore, 
will be a combination of the physical eciency of the algorithm, the eciency of our 
implementation of the hybrid method, and the hardware that we run it on. However, 
our discussion is generic and should be useful to anyone willing to employ the hybrid 
method. We present results obtained with our implementation of the hybrid method 

0.1
1

tMD = 10

T = 0.105

T = 0.085
T = 0.062

τMD
α

ρswap

τ α

10310110−110−3

106

104

102

100

Figure 3.  Relaxation time as a function of ρswap for three selected temperatures: 
T = 0.105, 0.085, 0.062. At fixed temperature, each data set corresponds to a given 
duration of the MD blocks, tMD = 0.1, 1, 10, and each single point to one value 
of nswap. The arrow labeled τMD

α  indicates the relaxation time of the liquid at 
T  =  0.105 for ordinary MD simulations; this time cannot be directly measured for 
the two lowest temperatures.
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in the LAMMPS package. We expect these results to be broadly applicable, as there is 
little flexibility in implementing such a serial program, apart from well-known optim
izations [6].

To characterize the influence of ρswap on the CPU time in the hybrid method, we 
measure the time in seconds to run hybrid simulations which last the same total MD 
time, using dierent combinations of nswap and tMD. The computational time should of 
course not depend on how the MD and SMC blocks are distributed, but rather on the 
total duration of each type of blocks. We therefore report times as a function of ρswap in 
figure 4. As expected, we see that all points collapse on a single master curve, confirming 
that the CPU time indeed depends on ρswap only. In the range ρswap = 0− 10, the CPU 
time of the hybrid method is dominated by that of the MD blocks. Around ρswap = 10, 
the CPU time becomes dominated by particle-swaps, and eventually grows linearly 
with ρswap with a slope controlled by the CPU cost of an individual swap move. This 
simple dependence of the CPU time with ρswap is well captured by a fitting function 
f(ρswap) = 1 + 0.04ρswap (dashed line in figure 4), which captures these two limits.

To finally determine the optimal parameters of the hybrid method, we combine the 
dynamical gain shown in figure 3 and the computational cost discussed in figure 4. The 
product of both quantities quantifies the time needed to achieve a given number of MD 
steps in units of the relaxation time of the system. In other words, this quantifies how 
long (in CPU time) it takes to equilibrate the system at a particular state point. This 
quantity should be minimal for the hybrid method to be the most ecient.

The numerical results are shown in figure 5. All the curves shown in this figure pres-
ent a minimum for a given value of ρswap, and the location and value of this mini-
mum both depend on tMD. For a given temperature, the global minimum occurs for 
tMD = 0.1. The location of the minimum varies over a narrow range of ρswap, slightly 
shifting to higher ρswap at lower temperatures. This range is highlighted by the shaded 
region in figure 5, and corresponds to ρswap = 20–100 and thus to nswap = 2–10. This 
represents the best trade-o between the speedup oered by increasing the number of 
swap moves, and the added CPU cost of performing these moves.

2.6. Comparison between the hybrid and swap MC methods

We now compare the eciency and physical dynamics obtained in both the hybrid 
and the swap MC methods. Both methods have their own set of optimised parameters. 
For the hybrid method, tMD and nswap must be tuned, whereas for swap MC one must 
adjust the relative probability p  to attempt a particle-swap move instead of a trans-
lational move. Within the MC approach the typical size of the translational moves 
must also be adjusted [7]. In order to compare the two methods, we present results for 
simulations run with the optimal parameters in each case. The optimal eciency of the 
swap MC algorithm is reached around p   =  0.2 [3]. In this section, we consider hybrid 
simulations with nswap = 10, tMD = 0.1.

To compare MD and MC methods, we need to employ a dictionary between tim-
escales, which correspond to very dierent processes in both approaches. To this end, 
we first measure the relaxation time of supercooled liquids measured in standard MC 
and MD simulations, i.e. with no swap moves at all. These are respectively expressed 
in numbers of MC steps and MD time. As found before in a dierent system [7], we 

https://doi.org/10.1088/1742-5468/ab1910
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observe that the structural relaxation time in both dynamics follows a similar temper
ature dependence, see figure 6(a). Rescaling the MC curve on top of the MD curve, we 
find that t  =  1 in MD units corresponds to t ≈ 320 MC steps. Using a time discretisa-
tion dt  =  0.01, this implies that 1 MD step corresponds roughly to a  =  3.2 MC steps, a 
conversion similar to the one found for a Lennard-Jones model [7].

This conversion factor allows us to convert the simulation parameters used in 
optimal hybrid simulations, nswap = 10, tMD = 0.1, into an equivalent probability of 

f(ρswap) = 1 + 0.04ρswap

ρswap

T
H

yb
ri

d
/
T

M
D

10310110−110−3

102

101

100

10−1

Figure 4.  Ratio of the CPU time THybrid of Hybrid simulations compared to the 
CPU time of standard molecular dynamics TMD, both running for the same total 
MD length. The trivial limits of THybrid/TMD at small and large ρswap are well 
captured by a simple empirical fitting function shown with a dashed line.

0.1
1

tMD = 10

T = 0.105

T = 0.085
T = 0.062

ρswap

τ α
×

f
(ρ

sw
ap

)

10310110−110−3

106

104
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Figure 5.  The product of the measured relaxation time τα with the computational 
cost f(ρswap) of increasing the swap density in the hybrid method presents a 
minimum for all temperatures. The hybrid method is the most ecient with the 
parameters yielding a minimum in the curves. The best trade-o between physical 
speedup and CPU cost is reached for nswap = 2− 10, tMD = 0.1, as highlighted by 
the shaded region.
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performing swap moves: pequiv = (nswap/a)/(nswap/a+ tMD/dt) ≈ 0.238, which is indeed 
very close to the optimal p ≈ 0.2 determined in [3].

In figure 6(b), we show self-intermediate scattering functions Fs(k,t) measured in 
hybrid and swap MC simulations at three temperatures below TMCT. We have con-
verted Monte Carlo steps in MD units using the above conversion factor. We see that 
the equivalence between MC and MD dynamics discussed before for conventional simu-
lations [7, 8] now extends to swap algorithms. Apart from small dierences at short 
times, the decay of time correlation functions using swap MC and the hybrid methods 
are very similar.
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Figure 6.  Comparison between the hybrid (nswap = 10, tMD = 0.1) and swap MC 
algorithms (p   =  0.2). (a) Equilibrium relaxation times of the liquid τα as a function 
of the inverse temperature in hybrid and swap MC methods, as well as in standard 
MD and MC simulations. Relaxation times for hybrid and MD methods are in MD 
units. For swap and conventional MC, we convert 1 MD step into a  =  3.2 MC 
steps. (b) Self-intermediate scattering function Fs(k,t) measured in swap MC (close 
symbols) and hybrid simulations (open symbols) at T = 0.062, 0.075, 0.092 using 
the same time units as in (a). These data demonstrate the full equivalence between 
swap MC and hybrid simulations, which oer the same equilibration speedup over 
conventional MC and MD methods.
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We obtain the relaxation time for these two swap dynamics and present the results 
in figure 6(a) along with the results for the ordinary dynamics. It is clear from this 
figure that the relaxation times of the swap MC and hybrid methods are again equiva-
lent. We conclude that the hybrid method is able to speedup the equilibration of 
supercooled liquids with an eciency comparable to the one of the original swap MC 
algorithm. Given the above conversion factor of order unity between MC and MD 
steps, we finally conclude that both methods give an equivalent equilibration speedup 
at an equivalent CPU cost.

We have shown that the hybrid method MC/MD is as powerful as the swap Monte 
Carlo algorithm when it comes to generating computer supercooled liquids at temper
atures lower than the laboratory glass transition. The implementation in the LAMMPS 
package that we propose should in addition make this algorithm a very powerful and 
versatile tool accessible to the glass community.

2.7. Eciency of the hybrid method in parallel

In essence, the hybrid method converts the translational moves of the original swap 
MC algorithm into MD integration steps, while keeping the much less frequent swap 
moves unchanged. An important dierence between translational MC steps and MD 
steps is that the former need to be performed sequentially, which makes MC intrinsi-
cally dicult to parallelise while MD steps can be perform simultaneously on several 
CPUs. Existing solutions to this problem only become advantageous for extremely 
large system sizes [29]. Converting MC steps to MD steps in the hybrid method thus 
makes it possible to easily parallelise the translational part of the swap algorithm. This 
is an important objective of the present work.

The LAMMPS package, a ‘Massively Parallel Simulator’, provides a good starting 
point to implement the hybrid scheme on several CPUs. In LAMMPS, the molecular 
dynamics is already well optimized to run on several processors. It is possible to par-
allelize MD simulations because the algorithm is deterministic, so each processor can 
be in charge of a subset of the total system without having to perform time-costly 
inter-processor communications frequently. To work within the existing framework of 
LAMMPS, some inter-processor communication is necessary during the SMC blocks. 
We now determine how much of an eect this has on the eciency of the hybrid 
method when run in parallel.

We simulate at temperature T  =  0.062 systems composed of N  =  1500, 12 000, 
120 000 particles. The simulations have been run on one, two and eight processors. For 
a given system size and number of CPUs, we run simulations at dierent values of nswap 
and tMD. All the simulations are run for the same total MD length. In figure 7 we report 
the CPU time in seconds for this large set of hybrid simulations.

We observe two regimes in this figure. At low density of swap moves, ρswap < 1, 
the CPU time of the simulation is dominated by the MD blocks. In this regime, the 
CPU time depends essentially on the number of particles per processor. For example, 
N = 12 000 particles on 8 CPUs takes about the same CPU time as N  =  1500 particles 
on one processor. In this regime of modest swap density, the hybrid algorithm allows 
us to eciently simulate very large systems by using more than one processor. In other 
words, we benefit from the optimal parallelisation oered by the MD algorithm, as 
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implemented in LAMMPS. In this regime of system sizes, no such improvement would 
be gained for the original swap MC method.

At larger ρswap, the CPU time becomes dominated by the SMC blocks, and it 
increases linearly with ρswap, as found already in figure 4. The relative position of the 
curves corresponding to dierent numbers of CPUs is inverted compared to the low 
ρswap regime. In other words, running simulations on more processors does not decrease 
the CPU time of a simulation, bur rather increases it.

The diculty in parallelising Monte Carlo algorithms is well-known and intrin-
sic to their stochastic sequential nature. In LAMMPS, information about particles 
in dierent parts of the box is stored on dierent processors. Adding SMC moves to 
LAMMPS therefore means that processors need to exchange information during most 
swap moves. These communications are time-consuming, and more frequent than dur-
ing parallelised MD simulations. This means that swap moves in this implementation 
are less ecient in parallel than they are in serial. The CPU time in this regime of ρswap 
is completely dominated by these inter-processors communications, hence the increase 
in CPU time when running on more processors. More details are given in appendix A.

There is a crossover between the two regimes discussed above, at which the CPU 
time is the same for a given system size, regardless the number of processors. This 
crossover occurs at a value around ρswap ∼ 10, which tends to decrease as system size 
increases.

In order to get the global eciency of the hybrid method in parallel, we have 
reproduced the analysis done in figure 5. We multiply the physical relaxation time by 
the CPU time for simulations run in parallel. The optimal parameters for the hybrid 
method in serial are around ρswap = 20–100 (see figure 5) but this corresponds to the 
swap-dominated regime. As a result, the global eciency of the hybrid method does 
not increase with the number of processors. In other words, for a large system, it is 
advantageous to use a larger number of swap moves on a single CPU than a smaller 

8
2

nCPU = 1

N = 1500

N = 12000

N = 120000

ρswap

C
P

U
ti
m

e
(s

)

10310210110010−110−210−3

104

103

102

101

100

10−1

Figure 7.  CPU time (in seconds) as a function of the swap density ρswap for hybrid 
simulations of systems composed of N  =  1500 (red), 12 000 (blue), 120 000 (green) 
particles, running on one (square), two (circle) or eight (triangle) processors. All 
the simulations run for a total time of 10 (in MD units), obtained by varying both 
tMD and nswap.
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number of swap moves on many CPUs, at least using our current implementation of 
the algorithm on the LAMMPS package.

2.8. Future directions

In order to improve the eciency of the hybrid method, in particular in the parallel 
case, several future directions are possible because some improvements could be made 
to our current implementation of the scheme in the LAMMPS package. One possibility 
would be to use a separate serial architecture for performing swap moves, while run-
ning the MD blocks in parallel. The SMC block would be performed on one processor 
only, avoiding costly inter-processor communication. In this case the MD blocks would 
be more ecient in parallel than in serial and the eciency of the SMC blocks would 
be the same, meaning that overall this implementation should be faster. However, this 
method requires copying data from the LAMMPS parallel architecture and building 
neighbour lists from scratch before every SWAP block. Then, at the end of SMC blocks 
the new particle sizes would be sent back to each processor and the neighbour lists and 
parallel architecture updated again. It may be that these extra calculations will have a 
strong eect on the computational eciency.

Another way to improve the speedup and circumvent the issues encountered while 
dealing with LAMMPS architecture would be to write a handmade molecular dynamics 
code that could be more versatile, and optimized for hybrid simulations. The MD part 
of the code in this case would be designed to run in parallel and integrate eciently 
with a completely serial SMC routine.

3. Continuous time swap MD algorithm

3.1. Equations of motion

In this section, we introduce an algorithm that includes the physics of swap MC moves 
in a fully continuous time MD framework. The swap MC algorithm used in the context 
of supercooled liquids [3, 5] uses swap moves where the diameter of pairs of particles 
is exchanged, which leaves the particle size distribution fixed. In older versions of the 
swap MC algorithm [4], particle diameters were exchanged with an external bath in a 
semi-grand canonical ensemble. This ensemble is conveniently used to describe theor
etically [17] and numerically [30] mixtures with a continuous size polydispersity. In 
this approach, the particle diameters are considered as fluctuating variables along with 
the particle positions. The diameters are constrained by an external potential (a chemi-
cal potential), and the particle size distribution becomes the result of the equilibrium 
sampling. The approach used in this section is a continuous time version of this idea. 
A zero-temperature version of the algorithm is discussed in [18, 31], which study the 
nature of energy minima generated by the Hamiltonian shown below in equation (4).

To study instead the finite temperature version of this approach, we intro-
duce a generalised Hamiltonian where the diameters of particles are considered as 
dynamical variables, alongside their positions. For a system of N particles, given 

the 3N particle coordinates rN ≡ {r1, r2, . . . , rN}, their 3N conjugate momenta 
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pN
r ≡ {p1,r,p2,r, . . . ,pN ,r}, the N particle diameters σN ≡ {σ1, σ2, . . . , σN} and their N 

conjugate momenta pNσ ≡ { p1,σ, p2,σ . . . , pN ,σ}, we define the Hamiltonian

H(rN ,pr
N , σN , pNσ ) =

∑
i

p2
i,r

2m
+ U(rN , σN)

+
∑
i

p2i,σ
2M

+ V (σN),

�

(4)

where m is the mass conjugate to position momenta p r, and M is the mass conjugate to 
diameter momenta pσ. The potential energy due to inter-particle interactions is given 
by U(rN , σN), which can be an ordinary pair potential. Each particle is additionally 

subject to a potential v(σi) that constrains its diameter σi, so that V (σN) =
∑

i v(σi) in 
equation (4). Examples of this potential will be given below.

The equations of motion follow from Hamilton’s equations, and read

dpi,r

dt
= −∂H

∂ri
= −∂U(rN , σN)

∂ri
,� (5)

dpi,σ
dt

= −∂H

∂σi

= −∂[U(rN , σN) + V (σN)]

∂σi

,� (6)

dri
dt

=
∂H

∂pi,r

=
pi,r

m
,� (7)

dσi

dt
=

∂H

∂pi,σ
=

pi,σ
M

.� (8)

Similarly to standard molecular dynamics, we discretise in time these equations of 
motion and obtain an enlarged version of the standard velocity-Verlet algorithm. We 
solve the equations of motion using this algorithm with a time discretization dt  =  0.001. 
As a result, we obtain trajectories for the particles coordinates and diameter. In the 
following, we simulate systems of N  =  500 particles at number density N/L3  =  1.0 in 
canonical ensemble NV T  in cubic box with periodic boundary conditions.

We consider two temperatures Tr and Tσ related to particle translational momenta 
and diameter momenta, respectively. They are defined as

Tr =
1

3N

∑
i

p2
i,r

2mi

,� (9)

Tσ =
1

N

∑
i

p2i,σ
2Mi

.� (10)

The temperatures are kept constant and equal, Tr = Tσ, during the simulations using 
a Berendsen thermostat [32] with coupling time constant τ = 5.0. In the following, 
we refer to the temperature simply as T. The reduced units are defined exactly as in 
section 2.1.
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3.2. Microscopic model

A glass-forming model is typically defined by the interactions between the particles and 
their size dispersity. We model the interaction between two particles i and j  by the pair 
potential defined in equation (1). In the continuous method, we cannot use the same 
nonadditive cross diameter rule as presented in section 2.1 because its derivative is not 
continuous. As a first step, we have simulated an additive rule for the diameters but we 
could easily generalise the nonadditive rule replacing the absolute value |σi − σj| by a 
smooth function with equivalent properties, such as for instance [1− exp(−(σi − σj)

2)].
We focus on continuously polydisperse systems characterized by their diameter 

distribution, P (σ). Contrary to the hybrid and swap MC methods in which particles 
exchange their diameters leaving the global distribution P (σ) unaected, the present 
method does not directly impose the diameter distribution P (σ). Instead, one must 
impose an external potential for the diameters, v(σ), to constrain the fluctuations of 
the diameters σN and the particle size distribution is obtained as the result of the equi-
librium simulations. This is a major diculty if one wants to perform simulations at a 
series of state points, since P (σ) would evolve if v(σ) were left unchanged. Therefore, 
this approach needs an additional iteration step where the potential v(σ) is adjusted 
at each state point in order to keep P (σ) constant. This additional step becomes time 
consuming at low temperatures, where the equilibration of the system is slow and con-
trols in particular the convergence of the distribution P (σ) itself.

We simulate two classes of systems which were shown to be structurally stable 
against crystallization at low temperature using swap MC. The first system is analogous 
to the continuously polydisperse one presented in section 2.1, and is characterized by 
P (σ) ∼ 1/σ3.2 in a finite range [σm, σM]. In order to obtain this diameter distribution 
at equilibrium, we design the diameter potential v(σ) as follows. The hard boundaries 
of the distribution at σm and σM are imposed by two very steep exponential functions. 
To generate a power law distribution P (σ) ∼ 1/σ3.2 in between, we employ a smooth 
power law form. The diameter potential used to enforce this distribution thus reads

v(σ) = exp[A(−λ1σ + σm)] + exp[A(λ2σ − σM)]−Dσn

= vσ(A,λ1,λ2,D,n),
� (11)

where the parameters (A,λ1,λ2,D,n) need to be tuned at each temperature in order 
to obtain the desired size distribution in equilibrium. More quantitative details on this 
procedure are given in appendix B, where all simulated parameters are tabulated. We 
show in figure 8(a) the measured probability distribution function at equilibrium across 
a range of temperatures. Therefore, we have successfully designed a diameter potential 
that imposes a constant diameter distribution that resembles the one studied in sec-
tion 2 with the hybrid method.

The second type of glass-forming model we study is a continuously polydisperse ver-
sion of a discrete binary mixture, using a 50:50 mixture of particles with a typical size 
ratio σB/σA = 1.4. In this model, the original delta peaks at σA and σB in the distribu-
tion P (σ) are broadened uniformly over a typical width ∆σ. We have considered two 
such binary systems of width ∆σ = 0.1 and ∆σ = 0.2. These diameter distributions are 
again designed by using the same functional form vσ as in equation (11) but using two 
distinct types of particles. This approach means we must now adjust 10 independent 
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Figure 8.  Probability distribution of diameters P (σ) measured in equilibrium 
at dierent temperatures T for: (a) the continuous polydisperse system with 
P (σ) ≈ 1/σ3.2; binary systems with uniform distribution of width ∆σ = 0.1 (b) and 
∆σ = 0.2 (c).
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parameters at each simulated temperature. We show in figures 8(b) and (c) the mea-
sured probability distribution functions measured at equilibrium across a broad range 
of temperatures for the two systems considered. The quantitative details about the 
parameters used in these simulations are also tabulated in appendix B.

We demonstrate in figure 8 that we are successful in designing diameter potentials and 
sets of parameters which produce a desired diameter distribution P (σ) across dierent 
temperatures. This method, however, is relatively cumbersome. At each temperature, 
one has to make many trials in order to find the parameters for the diameter poten-
tial that yields the desired probability distribution at equilibrium. As temperature 
decreases, relaxation times increase and the trial and error procedure becomes increas-
ingly costly in terms of CPU time. In our eort to design new algorithms and methods 
to simulate supercooled liquids at ever lower temperature, this method therefore does 
not necessarily appear as the most ecient one, as it introduces the need to perform a 
large number of runs to prepare the system before making any measurement. Of course, 
the temperature evolution of the potential v(σ) is very smooth, and thus training at 
high temperatures and some educated guesses help converge that procedure faster.

3.3. Structural instability and crystallization

Crystallisation, fractionation and ordering are problems that need to be faced when deal-
ing with supercooled liquids. To push the swap MC method to its maximal eciency, 
new models of supercooled liquids were developed that better resist ordering and are 
therefore better glass-formers. Recent investigations have demonstrated that swap MC 
is able to crystallise polydisperse models of hard spheres relatively easily [28, 33, 34], 
whereas the ordinary dynamics would only allow one to probe the metastable fluid.

We expect that the hybrid method and swap MC behave similarly with respect to 
crystallisation, but we find that the fully continuous version shows qualitatively dis-
tinct behaviour, as we now explain. In figure 8(a), we show that a continuous polydis-
persity can be easily maintained down to T  =  0.25 by a proper choice of the potential 
v(σ). If we use this insight to attempt thermalising the system at T  <  0.25 we observe 
that the system becomes unstable. An example is shown in figure 9 which shows the 
measured P (σ) for T  =  0.23, compared to the functional form σ−3.2 observed at higher 
temperatures. It is clear that the shape of the particle size distribution is now com-
pletely dierent since it develops peaks near σ ∼ 1.0 and σ ∼ 1.4. Simultaneously, 
direct visualisation reveals that the system has partially crystallised and phase sepa-
rated between large and small particles.

The physical interpretation is that the system is distorting the particle size distri-
bution (thus paying an energetic cost in diameter space due to the potential v(σ)) in 
order to gain free energy by ordering the system in position space. Such instability is 
typically not observed using hybrid and swap MC algorithm because the particle size 
distribution is by construction not allowed to vary over the course of a simulation. Of 
course, in the large system size limit, the phase separation and crystallisation reported 
in figure 9 should also occur when swap MC is used, because concentration fluctuations 
would occur. These fluctuations are presumably too slow to lead to crystallisation in 
hybrid and swap MC approaches.
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We conclude, therefore, that the type of semi-grand canonical simulation that we 
perform when employing the continuous time swap algorithm may unfortunately accel-
erate the crystallisation of the system. To cure this problem, new models should be 
developed that are even more robust against ordering and could then be simulated 
using the continuous time swap algorithm. For instance, one could attempt to use a 
finite nonadditivity to the pair interaction as a first step in this direction.

3.4. Choice of the diameter mass

In standard molecular dynamics the diameter of the particles is constant. This corre-
sponds to the limit of an infinite diameter mass M in the continuous method described 
by equation (8). As the diameter mass decreases from M = ∞, the diameters become 
dynamical variables and start to vary and influence the structural relaxation.

We look for the diameter mass that optimizes the continuous method. To do so, we 
compute the relaxation time τα of a liquid as a function of the diameter mass M. The 
relaxation time is computed as in section 2.4, taking equation (3) at wavevectors of 
magnitude k  =  6.7. We report in figure 10 the measured relaxation time τα as a function 
of inverse diameter mass 1/M in the continuously polydisperse system P (σ) ∼ 1/σ3.2, at 
a fixed temperature T  =  0.30.

The qualitative behaviour of τα in figure 10 is qualitatively similar to the one in 
figure 3. The parameter 1/M plays a role similar to the swap density ρswap or the prob-
ability p  of particle-swap moves in the hybrid and swap MC algorithms, respectively. 
When they increase, the typical timescale for the diameter dynamics decreases, which 
speeds up the physical relaxation of liquids. We observe a clear decrease in the struc-
tural relaxation time as the mass M of diameters decreases, starting from a very large 
value M  =  105. Around M  =  1, the relaxation time reaches a plateau, and decreasing 
further the diameter mass M does not speed up the structural relaxation of the liquid.
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Figure 9.  Probability distribution P (σ) of diameters σ, measured for continuous 
polydisperse system at T  =  0.23, where phase separation and crystallisation is 
observed. The energy cost in diameter space due to the distortion of the particle 
size distribution is more than compensated by an ordering in position space.
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While any choice M  <  1 minimizes the time needed to relax the liquid, a very small 
diameter mass is not suitable. Indeed, when M is too small, large variations of the 
diameters occur on very short time scales, which requires a very small integration time 
step dt. This eectively increases the CPU time of the simulations, which is undesired. 
In the following, we choose M  =  1 as the optimal compromise between physical speedup 
and computational eciency.

3.5. Physical eciency

We now compare the relaxation dynamics of the three glass-forming models presented 
in section 3.2 when simulated both with the continuous swap method and standard 
MD simulations. We first have to determine iteratively the correct parameters for the 
diameter potential at each temperature, as described above. Then, we run simulations 
with the continuous method at a temperature T to obtain equilibrium configurations. 
We also measure the equilibrium relaxation time of the system using the continuous 
time swap algorithm. Finally, the equilibrated configurations are taken as initial condi-
tions for standard MD simulations, during which the relaxation time is measured. By 
construction, then, the MD simulations run the dynamics for the same particle size 
distribution as the continuous time swap algorithm. These configurations will also serve 
as starting points for hybrid MD/MC simulations, to be discussed below in section 3.6.

The results for the equilibrium relaxation time τα of the three models and three 
numerical algorithms are reported in figure 11. The binary systems with ∆σ = 0.1 and 
∆σ = 0.2 can be simulated down to quite low temperature without crystallizing. In 
both cases, the eciency of the continuous time swap method over MD simulations 
is temperature dependent, with an eciency increasing as temperature decreases. The 
speedup in thermalization oered by the continuous method depends on the width ∆σ 
accessible to diameters. Larger variations in the particles’ diameters are expected to 
ease even more the structural relaxation of the liquid. When ∆σ = 0.1, diameters are 
more constrained than when ∆σ = 0.2. The dynamical gain observed in figure 11(a) 
is about one order of magnitude in relaxation time for ∆σ = 0.1, while for ∆σ = 0.2, 
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Figure 10.  Dependence of the equilibrium relaxation time τα with inverse diameter 
mass 1/M for continuous polydisperse liquids P (σ) ∼ 1/σ3.2 at temperature T  =  0.3.
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Figure 11.  Relaxation time as a function of inverse temperature measured in: (a) 
binary system with ∆σ = 0.1, (b) ∆σ = 0.2, and (c) continuous polydisperse system. 
Relaxation times have been computed using three dierent methods continuous 
time swap method, hybrid method and standard MD.
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extrapolation of the data presented in figure 11(b) suggest that the continuous time 
swap method can more easily achieve thermalization in a region inaccessible to MD 
simulations, with a speedup estimated at about two orders of magnitude. Clearly these 
two binary systems do not yield as large a speedup as fully polydisperse models [3], and 
as a result are less prone to crystallisation.

In the case of the continuous polydisperse model with diameter distribution 
P (σ) ∼ 1/σ3.2, shown in figure 11(c), the dynamical gain with the continuous method is 
even greater, similarly to what was measured with the swap MC algorithm [3]. While 
the dynamical gain is very interesting with this model, the continuous time method 
cannot simulate supercooled liquids at temperatures lower than T  <  0.25, the last point 
studied, because of structural instability discussed in section 3.3, and we can thus not 
benefit from the eciency of the swap algorithm as much as when the hybrid method 
is used.

3.6. Comparison with the hybrid method

In this section, we compare the physical eciency of the continuous time swap algo-
rithm with the hybrid method. To that eect, we use configurations equilibrated 
with the continuous method as initial condition for hybrid simulations using param
eters (nswap = 10, tMD = 0.1), and measure the relaxation time of the liquid. Results 
for the binary system with ∆σ = 0.2 and the continuous polydisperse system with 
P (σ) ∼ 1/σ3.2 are presented in figures 11(b) and (c). We observe that both methods 
give physical relaxation times that are extremely close to one another, and have a 
very similar temperature dependence. Note that we did not tune the parameters of 
each method in order to obtain the exact same relaxation times, but rather used each 
technique with its own set of optimal parameters. The agreement between the two 
methods suggests that the continuous time swap method, once optimised, captures the 
same physics as the other swap algorithms (hybrid MC/MD and pure MC). Overall, 
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Figure 12.  Self-intermediate scattering function Fs(k,t) calculated for the binary 
system with ∆σ = 0.2 using the continuous time (open symbols) swap and hybrid 
(filled symbols) algorithms at dierent temperatures.
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we conclude that all three algorithms have the same eciency in terms of speedup of 
the structural relaxation.

Finally, we also plot the self-intermediate scattering functions measured at dierent 
temperatures in hybrid and continuous time methods in figure 12. At each temper
ature, the curves corresponding to the two methods have the same time dependence. 
Both the relaxation dynamics at long times and microscopic dynamics are very simi-
lar. This implies that the two methods are equivalent as far as the relaxation of the 
liquid is concerned. The dierent nature of the microscopic rules for the dynamics do 
not matter. Performing discrete particle-swap moves or continuously modifying the 
diameters of particles has no influence on the physical relaxation of supercooled liquids 
at long times. What matters, eventually, is the strong coupling between diameter and 
position degrees of freedom that relax in a strongly correlated manner [3], the diameter 
fluctuations allowing the system to eciently relax the positional degrees of freedom 
even in a temperature regime where the physical dynamics is extremely slow.

3.7. Computational performance

The continuous time swap algorithm runs similarly to conventional MD simulations, 
with the dierence that particles have one more degree of freedom (the diameter) 
in addition to the positions. This implies that running this algorithm is essentially 
as costly in terms of CPU time as running a conventional MD simulations. But the 
speedup oered in terms of structural relaxation time is the same as with swap MC 
method. This method thus oers a valuable alternative to swap MC, especially for users 
that are not familiar to Monte Carlo simulations.

Attempts to parallelize the hybrid method did not bring significant improvements 
in terms of CPU time. This was due to the diculty to parallelize eciently the Monte 
Carlo blocks present in the hybrid method. The continuous time swap method oers 
the same advantages as standard molecular dynamics simulations in terms of paralleli-
sation. Since the dynamics is continuous and deterministic, one can in principle imple-
ment this method to run it eciently on several processors. The CPU time needed to 
run simulations of the same MD length is expected to scale with the number of particles 
per processor, as discussed in section 2.7.

4. Discussion and perspectives

In this work, we provided two distinct generalisations of the swap Monte Carlo algo-
rithm that was recently proven to be extremely successful in producing equilibrium 
configurations of supercooled liquids at very low temperatures. Both algorithms com-
bine the idea of particle swaps with conventional molecular dynamics techniques. In 
the first version, we simply alternate periods of standard MD with periods of swap MC 
moves, while in the second we solve Hamilton’s equations of motion for both positions 
and diameters simultaneously, in a fully continuous time MD scheme.

After an adequate optimisation of all simulation parameters involved in each three 
swap-like algorithms, we find that the three algorithms provide a very similar (and 
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quite impressive in some cases) speedup of equilibration, which suggests that the same 
physics is at play in the three cases. Namely, the addition of diameter fluctuations 
strongly couples to positional degrees of freedom to relax the structure of the super-
cooled liquid. The equivalence between the three algorithms even extends to time cor-
relation functions.

Our general conclusion is that all three algorithms can be equivalently used to pro-
duce low-temperature equilibrium configurations for model glass-formers, and which 
algorithm should be preferred depends is firstly a matter of personal convenience. The 
hybrid and swap MC are very close to one another in spirit and performances, and 
the implementation into the LAMMPS software of the hybrid method makes it user-
friendly in case a dierent model needs to be studied. Regarding the continuous time 
swap algorithm, it is promising since it combines the eciency of the swap MC to the 
simplicity of the MD technique, with great potential if large systems need to be studied. 
However, the iterative determination of the diameter potential makes it more cum-
bersome to use, and one must find ways to prevent the ordering that the semi-grand 
canonical ensemble seems to facilitate. In future work, it would therefore be interest-
ing to develop more robust glass-forming models that can resist the crystallisation and 
phase separation observed when the particle size distribution is not conserved by the 
dynamics.
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Appendix A. Considerations for implementing the hybrid MD/MC swap algorithm 
in LAMMPS

In this section of the appendix we give some details about how the hybrid molecular 
dynamics/particle-swap Monte Carlo method is implemented in the LAMMPS pack-
age. We provide an outline of how several problems were overcome.

A.1. Handling continuously polydisperse systems in LAMMPS

In LAMMPS, each particle has a type and all particles of a given type share the same 
values for certain properties. One of these shared properties is their size σ. This means 
that to simulate a system of N particles with continuous polydispersity, N dierent 
types of particle are needed. Defining N types of particles in LAMMPS would be cum-
bersome, especially if we wish to simulate large numbers of particles.

To overcome this problem, we decided to define only one particle type, and to 
store the diameters of particles in a type-independent property. We used the existing 
charge property to store the diameter of each particle. We also created a modified 
version of pair_style lj called pair_style lj_poly that uses the charge in 
place of particle size when calculating the pair interaction energy.
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A.2. Avoiding neigbour list rebuilds after every swap move

To keep the neighbour list of particle i as short as possible, LAMMPS takes the size of 
particle i into account when generating its neighbour list. This means that if the size of 
i should change (for example during a swap move), the neighbour list is incorrect and 
must be recalculated. Given that we typically attempt N swap moves after every MD 
step, recalculating neighbour lists this frequently would overwhelm any computational 
time gained by using the swap algorithm.

To reduce this computational burden, we calculate the neighbour list for particle 
i as if it had the largest size in the particle size distribution. This means that after a 
successful swap move, the neighbour list will still be valid. This modification comes 
at the price of longer neighbour lists, but the increase in the time to calculate pair 
interaction energies and to update a particle’s neighbour list is oset by not having 
to recalculate the neighbour list after every swap move. We note that this means the 
simulation time for systems of particles with pair interactions that have short cutos 
will be significantly faster.

A.3. Full and half neighbour lists

The neighbour lists required by molecular dynamics and Monte Carlo simulations are 
dierent. Due to the nature of the energy and force calculations being carried out at 
each step, molecular dynamics simulations require that a pair of particles appears once 
in the neighbour lists: that is if j  is in the neighbour list of i then i is not in the neigh-
bour list of j . In a Monte Carlo simulation, particle i must know about all the particles 
it could interact with: i would appear in the neighbour list of j  and j  in that of i. In 
practice this means that the neighbour lists required for Monte Carlo simulations are 
twice the size of those for molecular dynamics. In LAMMPS, these are referred to as 
full and half neighbour lists. Since the energy and force calculations take up the 
bulk of computational time, we wish to avoid maintaining only full neighbour lists 
and thus doubling the length of the force calculations performed during each molecu-
lar dynamics move. The alternative solution of maintaining only half neighbour lists 
and performing a sum over all particles for the energy calculations during Monte Carlo 
moves is even less desirable.

Thankfully LAMMPS has a method for updating full and half neighbour lists 
together at the same time—the computational overhead to do this is considerably less 
than that required for the two solutions described above. The class pair_lj_poly 
must be written to ensure that the correct neighbour list is used in each case: full for 
interaction energies and half for force calculations.

A.4. Triggering blocks of swap moves

Due to some technical details about how blocks of swap moves are triggered during a 
LAMMPS simulation we had to modify the run function in the LAMMPS verlet 
class. The swap moves are triggered within a modify-  >  pre_exchange() command 
and the position of this command in the run function means that neighbour lists are 
unnecessarily calculated every time a block of swap moves is attempted. We moved 
the position of the modify-  >  pre_exchange() command within the run function 
to prevent this.
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A.5. The hybrid method and parallelisation

The final issue, which remains only partially resolved, arises due to integrating a serial 
simulation method (swap Monte Carlo) into a parallelized one (molecular dynamics, as 
performed by LAMMPS). This issue is caused by the particular way that LAMMPS 
implements parallel computation and could be avoided if custom molecular dynamics 
code was used. If this was done, the theoretical maximum computational eciency for 
the parallelised hybrid method would be achieved.

LAMMPS spatially parallelises the system, meaning that a processor has responsi-
bility for a sub-box of the simulation box. A processor must also keep track of particles 
on neighbouring processors which may interact with the particles it is responsible for. 
This means that during molecular dynamics bouts of inter-processor communication 
must be carried out with roughly the same frequency as the neighbour lists are rebuilt. 
Due to the non-local nature of the changes that take place during swap moves and the 
way that LAMMPS keeps track of particle identities, this inter-processor communi-
cation must be carried out much more frequently when attempting swap moves. We 
have tried to minimise it as much as possible, but it is impossible to eliminate without 
more serious modifications to LAMMPS. Unfortunately, these communications are 
suciently costly that our implementation of the hybrid method does not scale as well 
as it could when run on multiple processors.

Appendix B. Designing diameter potentials in the continuous time swap algorithm

B.1. Continuously polydisperse model

In this method, in the absence of a diameter potential, i.e. when vσ = 0, the particles 
sizes will all shrink to zero to minimize the potential energy. Therefore we must per-
form our simulations for a finite diameter potential to constrain the diameter sizes for 
a desired range and distribution. We employ equation (11) as defined in section 3.2 to 
generate continuously polydisperse systems with a size distribution P (σ) ∼ 1/σ3.2. In 
this equation, two exponential functions create the steep walls (the steepness is deter-
mined by the parameter A, here A  =  100.0) at minimum σm and maximum diameters 
σM. To generate the desired particle size distribution between [σm, σM ], we employ a 
power law form with proper combination of parameters n and D. The power n decides 
the nature of the distribution, while the prefactor D set an energy scale in diameter 
space (and hence is T-dependent).
We start the process of tuning the parameters of diameter potential at some initial 
temperature. We first obtain n  =  2.6 and D  =  14.46 at T  =  1.0. We know that for a 
given size distribution, the pair potential energy increases as T increases. So if we fix 
these potential parameters n and D and investigate a higher T, the kinetic energy will 
not suce to sample enough of the large particles and we need to increase the param
eter D to reobtain the correct distribution. Similarly we decrease the parameter D as 
we decrease T. Also, we notice that after fixing the parameters A, n and D, then while 
going from high to low T, the particle size distribution becomes systematically nar-
rower and therefore we need to choose two more parameters, λ1 and λ2, to maintain the 
correct width of the size distribution.
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Here we tune our potential parameters such that the average size σ ≈ 1.0 and the 
average polydispersity is ≈24%. The resulting potential is continuous in its first and 
second derivatives and is thus convenient for MD simulations. Representative potential 
v(σ) are shown in figure B1 and the corresponding values of the parameters at dierent 
temperatures are reported in table B1.

B.2. Binary polydisperse model

The second class of system that we consider is an equimolar mixture of particles having 
average size ratio 1.4 (i.e. σA/σB = 1.4) with uniform distributions centred around their 
respective average diameters σA and σB, of width ∆σ = 0.1 and ∆σ = 0.2.

To generate the diameter potential we employ the same functional forms as in equa-
tion (11). There are six terms in this diameter potential. Four exponential functions 
(with steepness parameter A  =  100) define the steep walls delimiting the range of the 
particle size distributions of width ∆σ, and two power law functions with suitable power 
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Figure B1.  Diameter potential at dierent T for suitable set of parameters to 
maintain the desirable distribution of particles with average diameters σ ≈ 1.0 and 
polydispersity of ≈24%.

Table B1.  Parameters for internal potential v(σ) to generate distribution of size 
of particles P (σ) ∼ 1/σ3.2.

T D λ1 λ2

1.00 14.4600 1.000 1.0000
0.90 13.9400 1.000 1.0000
0.80 13.3900 1.000 1.0000
0.70 12.8830 1.004 0.9995
0.60 12.2998 1.006 0.9980
0.50 11.6840 1.009 0.9950
0.45 11.3139 1.010 0.9950
0.40 10.8932 1.010 0.9950
0.35 10.5277 1.013 0.9950
0.30 10.0566 1.016 0.9950
0.25 9.44502 1.017 0.9920
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of σ (n1  =  2.5 and n2  =  2.4) produce uniform distributions centred around σA = 1.0 and 
σ = 1.4.

In this case, the average diameter is therefore σ ≈ 1.2. For the case of ∆σ = 0.1, the 
polydispersity for A-type particles is ≈3.2% and around σB = 1.4 it is ≈2.2%. For the 
case of ∆σ = 0.2, the polydispersity around σA = 1.0 is ≈6% and around σB = 1.4 it is 
≈4.2%. The parameters used at dierent temperatures are listed in table B2.
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