
Time-Resolved 4D STEM Reveals Facilitated Dynamics 
in a Multicomponent Metallic Glass Forming Liquid
Shuoyuan Huang1,2, Shiyi Qin3, Ludovic Berthier4,5, Camille Scalliet6, Victor M. Zavala3, 
and Paul M. Voyles1,*
1Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
2Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
3Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
4Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
5Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
6Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
*Corresponding author: paul.voyles@wisc.edu

Deeply supercooled liquids (SCLs) exhibit spatially heterogeneous dynamics where local mobility varies by orders of magnitude 
even a few nanometers apart as they cool toward the glass transition. Dynamic facilitation theory attributes this heterogeneity to 
regions of high mobility that facilitate the excitation of dynamics in neighboring areas [1,2]. Experimental evidence for dynamic 
facilitation have been observed in colloidal systems with video microscopy [3], but individual particle tracking is required, which 
is unfeasible for more complex three-dimensional liquids.

Time-resolved four-dimensional scanning transmission electron microscopy (4D STEM) has been demonstrated to probe relax-
ation behaviors in liquids with nanoscale spatial resolution [4]. The time series of diffraction intensity were used to obtain relax-
ation time scales for different regions. However, rich spatial-temporal correlations in the local dynamics remain largely 
unexplored, due to the complexity of data. Here, we use the Euler characteristic (EC) [5], a simple yet powerful topological de-
scriptor, to identify spatiotemporal correlative features in time-resolved 4D STEM data, which leads to evidence for dynamic fa-
cilitation in a metallic glass forming liquid.

Figure 1 shows the process of experimental acquisition and data analysis. Repeated 4D STEM experiments (Fig. 1a) were per-
formed on a Pt57.5Cu14.5Ni5.5P22.5 metallic glass nanowire which was heated in situ above its glass transition temperature. This 
generated a (ve-dimensional diffracted intensity data I(x, y, kr, kϕ, tf ), where x, y are spatial coordinates, kr, kϕ are radial and 
azimuthal component of the wave vector k, and tf is the time of acquired frame. To describe the spatiotemporal dynamics, the 
time autocorrelation function was calculated by

g2(x, y, kr, kϕ, t) =
I(x, y, kr, kϕ, tf )I(x, y, kr, kϕ, tf + t)tf

I(x, y, kr, kϕ, tf )
2
tf

, (1) 

where t is elapsed time. The g2 data hypercube contains information of the time-space behavior of dynamics. An example 
g2(x, y, t) data cube at a certain wavevector k is plotted in Fig. 1b. g2(x, y) data represents an intensity map that depicts the level 
of correlation at a certain elapsed time t. The correlation intensity map g2(x, y) at a certain elapsed time t (Fig. 1c) can be trans-
formed into a two-dimensional binary map by applying a (ltration threshold. Examples of (ltered 2D map at various (ltration 
levels are shown in Fig. 1d. The topology of these resulting 2D shapes is studied by persistent homology [6] with the n-th Betti 
number βn denoting the rank of n-th homology group: β0 is the number of connected components, and β1 is the number of holes. 
The EC is then calculated by [7]

χg2
= β0 − β1. (2) 

An EC curve summarizing the topology of the g2(x, y) data at multiple scales is calculated as a function of the (ltration level, as 
shown in Fig. 1d. Since the relaxation dynamics depend on the wave-vector magnitude kr rather than the scattering angle kϕ, the 
results were calculated individually for all k pixels and then averaged over kϕ. The analysis was only performed over the kr range 
of the (rst structure factor peak from 0.32 to 0.56 Å-1.

A varying (ltration level is necessary at each elapsed time to account for the spatially varying exponential decrease in g2. The EC 
curve summarizes the topology of the g2 data across different (ltration levels. Peaks and valleys in the EC curve represent the g2 
values where most regions are situated. Consequently, (ltration levels at the maximum EC were used for each time step. Two 
topological descriptors were calculated: the number density of domains

Number density =
β0|max χ

S
, (3) 

Domain area = Af

β0

􏼡􏼡􏼡􏼡
max χ

, (4) 

where S is the total area of the sample, and the average domain area
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where Af is the area of (ltered object. By comparing the experimental results with a synthetic random model and results from an 
MD simulation [8], we show that the time dependencies of these two descriptors reveal spatiotemporal insight about the dynamic 
process in the context of DF.

Fig. 2 shows the number density of fast- and slow-relaxing regions as a function of time (normalized by relaxation time 
τ) in experimental g2 (panels a, b, d and e) compared with synthetic g2 data (panel c and f) for which the degree of fa-
cilitation is an adjustable parameter. Two key signatures of DF are identi(ed that exist in experiment, MD simulation 
(not shown), and synthetic model: (1) the plateau in fast domain number density near t ≈ τ, which is related to the growth 
of fast domains as a result of facilitation; and (2) the increase in slow domain number density at times longer than τ, 
which is a result of percolation of fast domains due to facilitation. Behaviors arising from similar physical process are 
also found for the domain area metric. It is also evident that both features in number density are stronger for data col-
lected near the structure factor peak, as seen for the data with colder colors in Fig. 2a and 2d. On the other hand, the 
behavior of the number density depends less on temperature (Fig. 2b and 2e), which is likely due to the narrow tempera-
ture range collected.

At k near the structure factor peak, where atomic packing is denser, stronger facilitation may result from stronger bonding, 
consistent with de Gennes’ argument for slow dynamics at the structure factor peak [9]. We have previously shown that different 
chemical bonding in multicomponent system exhibit decoupled dynamic behavior [4]. This connection between bonding strength 
and facilitation level potentially links dynamic facilities to dynamic heterogeneity in SCLs. The results suggest the existence of 
dynamic facilitation in a multicomponent metallic liquid, and that it is stronger for data collected near the structure factor 
peak, potentially related to longer relaxation times and growing heterogeneity.  

Fig. 1. (a) Schematic illustration time-resolved 4D STEM experiment; (b) Example of g2(x, y, t) data cube; (c) Example of g2(x, y) map at certain elapsed 
time; (d) Illustration of EC curve at different filtration level. Insets are filtered g2 data object.  

Fig. 2. Number density of fast domains for Pt57.5Cu14.5Ni5.5P22.5 nanowires at (a) different k at 507 K and (b) different temperatures at 0.44 Å-1, and (c) for 
synthetic random models with different levels of dynamic facilitation. The number density of slow domains at (d) different k at 507 K and (e) different 
temperatures at 0.44 Å-1, and (f) for synthetic random models with different levels of dynamic domains.

Microscopy and Microanalysis, 31 (7), 2025                                                                                                                                                 1561
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/article/31/Supplem
ent_1/ozaf048.801/8213359 by Ecole N

orm
ale Superieure user on 06 January 2026



References
1. Palmer RG et al. Phys. Rev. Lett. (1984) 53 958–961. https://doi.org/10.1103/PhysRevLett.53.958
2. Garrahan JP and Chandler D. Proc. Natl. Acad. Sci. (2003) 100 9710–9714. https://doi.org/10.1073/pnas.1233719100
3. Gokhale S et al. Nat. Commun. (2014) 5 1–7. https://doi.org/10.1038/ncomms5685
4. Huang S and Voyles PM. Ultramicroscopy (2024) 256 113886. https://doi.org/10.1016/j.ultramic.2023.113886
5. Smith A and Zavala VM. Comput. Chem. Eng (2021) 154 107463. https://doi.org/https://doi.org/10.1016/j.compchemeng.2021.107463
6. Carlsson G. Bull. Am. Math. Soc. (2009) 46 255–308.
7. Adler RJ et al. arXiv (2010) arXiv:1003.1001. https://doi.org/10.48550/arXiv.1003.1001
8. Scalliet et al. Phys. Rev. X (2022) 12 41028. https://doi.org/10.1103/PhysRevX.12.041028
9. De Gennes PG. Physica (1959) 25 825–839. https://doi.org/10.1016/0031-8914(59)90006-0

1562                                                                                                                                                 Microscopy and Microanalysis, 31 (7), 2025
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/article/31/Supplem
ent_1/ozaf048.801/8213359 by Ecole N

orm
ale Superieure user on 06 January 2026

https://doi.org/10.1103/PhysRevLett.53.958
https://doi.org/10.1073/pnas.1233719100
https://doi.org/10.1038/ncomms5685
https://doi.org/10.1016/j.ultramic.2023.113886
https://doi.org/https://doi.org/10.1016/j.compchemeng.2021.107463
https://doi.org/10.48550/arXiv.1003.1001
https://doi.org/10.1103/PhysRevX.12.041028
https://doi.org/10.1016/0031-8914(59)90006-0

