
J. Chem. Phys. 151, 084504 (2019); https://doi.org/10.1063/1.5113477 151, 084504

© 2019 Author(s).

Does the Adam-Gibbs relation hold in
simulated supercooled liquids?
Cite as: J. Chem. Phys. 151, 084504 (2019); https://doi.org/10.1063/1.5113477
Submitted: 04 June 2019 . Accepted: 04 August 2019 . Published Online: 28 August 2019

Misaki Ozawa , Camille Scalliet , Andrea Ninarello , and Ludovic Berthier 

https://images.scitation.org/redirect.spark?MID=176720&plid=1003552&setID=378408&channelID=0&CID=324848&banID=519754216&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=090766658a89b79064edb0c72617f35d90737007&location=
https://doi.org/10.1063/1.5113477
https://doi.org/10.1063/1.5113477
https://aip.scitation.org/author/Ozawa%2C+Misaki
http://orcid.org/0000-0002-4603-8878
https://aip.scitation.org/author/Scalliet%2C+Camille
http://orcid.org/0000-0002-7969-891X
https://aip.scitation.org/author/Ninarello%2C+Andrea
http://orcid.org/0000-0001-5817-3084
https://aip.scitation.org/author/Berthier%2C+Ludovic
http://orcid.org/0000-0003-2059-702X
https://doi.org/10.1063/1.5113477
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5113477
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5113477&domain=aip.scitation.org&date_stamp=2019-08-28


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Does the Adam-Gibbs relation hold
in simulated supercooled liquids?

Cite as: J. Chem. Phys. 151, 084504 (2019); doi: 10.1063/1.5113477
Submitted: 4 June 2019 • Accepted: 4 August 2019 •
Published Online: 28 August 2019

Misaki Ozawa,1 Camille Scalliet,1 Andrea Ninarello,2 and Ludovic Berthier1,a)

AFFILIATIONS
1Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
2CNR-ISC Uos Sapienza, Piazzale A. Moro 2, IT-00185 Roma, Italy

a)ludovic.berthier@umontpellier.fr

ABSTRACT
We perform stringent tests of thermodynamic theories of the glass transition over the experimentally relevant temperature regime for several
simulated glass-formers. The swap Monte Carlo algorithm is used to estimate the configurational entropy and static point-to-set lengthscale,
and careful extrapolations are used for the relaxation times. We first quantify the relation between configurational entropy and the point-to-
set lengthscale in two and three dimensions. We then show that the Adam-Gibbs relation is generally violated in simulated models for the
experimentally relevant time window. Collecting experimental data for several supercooled molecular liquids, we show that the same trends
are observed experimentally. Deviations from the Adam-Gibbs relation remain compatible with random first order transition theory and may
account for the reported discrepancies between Kauzmann and Vogel-Fulcher-Tammann temperatures. Alternatively, they may also indicate
that even near Tg thermodynamics is not the only driving force for slow dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5113477., s

I. INTRODUCTION
Since its first derivation in 1965,1 the Adam-Gibbs relation has

played a central role in glass transition studies2 since it is at the
core of thermodynamic approaches to the glass problem.1–9 The
Adam-Gibbs relation captures in a simple mathematical form the
physical idea that the decrease in the configurational entropy Sconf
controls the growth of the relaxation time τα as the experimental
glass transition temperature Tg is approached,

log(τα/τ0) ∝
1

TSconf
, (1)

where τ0 is a microscopic time scale. Testing the Adam-Gibbs rela-
tion has almost become synonymous to testing the thermodynamic
nature of glass formation.10–13

Since computational methods have become available in the
early 2000s to measure the configurational entropy in numerical
simulations,14–16 the Adam-Gibbs relation has been tested in a large
number of studies using many different models of glass-forming
materials.12,17–24 Importantly, these simulations are all restricted
to a high temperature regime (typically above the mode-coupling

crossover temperature Tmct
25) that barely overlaps with the corre-

sponding experimental studies. In addition, simulations typically
cover a dynamic window of at most 3–4 decades, much narrower
than in experimental studies. Despite these caveats, the general con-
sensus is that the Adam-Gibbs relation is generally valid in the
regime accessed by the simulations. In experiments, which typi-
cally analyze temperatures close to Tg , the Adam-Gibbs relation
seems again to be well obeyed for a range of materials.10,11,26–32

Yet, experiments as well indicate that the Adam-Gibbs relation
does not hold anymore above a temperature scale close to Tmct,11,28

in stark contrast with the numerical results. Systematic deviations
from the Adam-Gibbs relation were also reported below Tmct for
some systems,28,30 but imprecise entropy measurements or inappro-
priate time scale determinations have been invoked to rationalize
them.

In the last three decades, the random first order transition
(RFOT) theory of the glass transition3,5 has revisited the Adam-
Gibbs relation in greater depth4–7 to provide an increasingly precise
description of the connection between thermodynamics and dynam-
ics in supercooled liquids. This connection can be decomposed in
two steps. First, the decrease in the configurational entropy is shown,

J. Chem. Phys. 151, 084504 (2019); doi: 10.1063/1.5113477 151, 084504-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5113477
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5113477
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5113477&domain=pdf&date_stamp=2019-August-28
https://doi.org/10.1063/1.5113477
https://orcid.org/0000-0002-4603-8878
https://orcid.org/0000-0002-7969-891X
https://orcid.org/0000-0001-5817-3084
https://orcid.org/0000-0003-2059-702X
mailto:ludovic.berthier@umontpellier.fr
https://doi.org/10.1063/1.5113477


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

by a purely thermodynamic reasoning,4 to give rise to a growing
“point-to-set” static correlation lengthscale

ξpts ∝ S−1/(d−θ)
conf , (2)

where an interface exponent θ is introduced. In the simplest approx-
imation, one has θ = d − 1 which corresponds to a (hyper)surface
in a space of dimension d. The value θ = d/2 was also proposed3,7

to take into account finite dimensional surface fluctuations due to
the disordered nature of the amorphous phase. More generally, the
inequality θ ≤ d − 1 is expected to hold. Second, the connection to
dynamics is made via the assumption that relaxation in the liquid
for T < Tmct proceeds via thermally activated events correlated over
a lengthscale ξpts, resulting in the general relation3,4

log(τα/τ0) ∝ ξψpts/T, (3)

where ψ is a dynamical exponent. Various theoretical and numer-
ical estimates of ψ have been proposed.4,33–36 In the original paper
by Kirkpatrick et al.,3 ψ = θ = d/2 was assumed and so only one
exponent had been introduced.

Using Eqs. (2) and (3), one finds a generalized version of the
Adam-Gibbs relation,

log(τα/τ0) ∝
1

TSαconf
, (4)

with a nontrivial exponent

α = ψ
d − θ . (5)

This shows that α may or may not be equal to unity, depending on
the relative values of the two independent exponents ψ and θ. As a
consequence, Eq. (4) may or may not be equivalent to Eq. (1).

To our knowledge, a direct test of Eqs. (3)–(5) in the theoreti-
cally motivated temperature regime, employing appropriate observ-
ables, has never been performed. Most previous simulations have
considered a temperature regime T ≳ Tmct

12,17,21,37 where the physics
is expected to be nonactivated and the configurational entropy and
point-to-set lengthscales are not well-defined. This is of course valu-
able work, but theory itself suggests that the tested scaling relations
have no reason to hold in this temperature regime. Experiments
instead access the correct temperature regime but cannot easily mea-
sure the point-to-set correlation lengthscale. As a proxy, Refs. 38
and 39 replaced ξpts by the lengthscale of dynamic heterogeneities
that can be more easily estimated experimentally.40 Many other
experimental studies study Eq. (1) directly near Tg .11,30

In this work, we take advantage of the progress allowed by
the swap Monte Carlo algorithm41,42 to measure directly in sev-
eral numerical models the temperature dependence of the con-
figurational entropy and point-to-set lengthscale down to Tg . For
the dynamics, we build on previous work42 and provide additional
experimental support showing that one can safely estimate the tem-
perature dependence of the relaxation time also down to Tg , using
a careful fitting procedure. We collect data from earlier works43–45

that we extend where needed and perform new simulations for one
additional model.

As a result, we are in a position to provide for the first time
stringent tests of the Adam-Gibbs relation and of RFOT theory

for computer models simulated in the same regime as in experi-
ments. Our results suggest that the Adam-Gibbs relation is generally
not valid in computer models in the experimental regime Tg < T
< Tmct. To test our findings against experiments, we collect high-
quality thermodynamic and dynamic data for several supercooled
liquids (most of which are obtained by state-of-the-art thermody-
namic measurements46) and reach similar conclusions. Overall, we
find that Eq. (1) is not obeyed for most systems, while Eq. (4) is
obeyed with an exponent α that fluctuates weakly from system to
system with typically α < 1. Our findings can be taken as a confir-
mation either that RFOT theory works well with a nontrivial set of
critical exponents or that a small α < 1 exponent indicates that ther-
modynamics is not the only driving force for the dynamic slowdown
near Tg .

This paper is organized as follows. In Sec. II, we present the
numerical methods used to obtain the configurational entropy, the
point-to-set lengthscale, and the relaxation time. We also describe
our choice of experimental data to reliably test the Adam-Gibbs rela-
tion over a broad range of temperatures. In Sec. III, we present the
results of our analysis of the exponents θ and α in simulations and
then in experiments. We discuss the physical meaning of our results
in Sec. IV.

II. DESCRIPTION OF THE DATA
In order to analyze quantitatively the connection between

dynamic and thermodynamic properties, we collect and extend data
from previous numerical works. We also collect data from selected
published experimental works and motivate our selection.

A. Numerical models
The recent development of the swap Monte Carlo algorithm

allows us to access very low-temperature equilibrium configura-
tions in computer simulations. In particular, the temperature regime
Tg < T < Tmct can be comfortably accessed. This temperature regime
is the correct one to test thermodynamic theories as it is precisely
where they should apply, and it corresponds to the regime explored
experimentally.

We gather simulation data for polydisperse systems using a
continuous size distribution.42 The particle diameters σ are dis-
tributed between σmin and σmax from f (σ) = cσ−3, where c is a
normalization constant and σmin/σmax = 0.45. We use the average
diameter σ as the unit length.

We study four numerical models: three-dimensional additive
hard spheres (HS3D) and41 two- and three-dimensional nonaddi-
tive soft disks (SSV2D)43 and spheres (SSV3D)42 under an isochoric
path. We also perform new simulations of three-dimensional non-
additive soft spheres (SSP3D), under an isobaric path. To thermalize
the last model, we use an hybrid molecular dynamics/swap Monte
Carlo scheme.47

We use the following pairwise potential for the polydisperse
soft sphere/disk models:42

vij(r) = v0(
σij
r
)

12
+ c0 + c1(

r
σij
)

2

+ c2(
r
σij
)

4

, (6)

σij =
(σi + σj)

2
(1 − ϵ∣σi − σj∣), (7)
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where v0 is the energy unit and ϵ quantifies the degree of nonaddi-
tivity of the system. We set ϵ = 0.2 for SSV3D and SSV2D, and ϵ = 0.1
for SSP3D. The constants, c0, c1, and c2, are chosen to smooth vij(r)
up to its second derivative at the cut-off distance rcut = 1.25σij. We
set the number density ρ = N/L3 = 1.02 with N = 1500 for SSV3D
and ρ = N/L2 = 1.01 with N = 1000 for SSV2D. For SSP3D, the
pressure on the isobaric path is P = 30.0. For HS3D,41 the pair inter-
action is zero for nonoverlapping particles and infinite otherwise.
The relevant control parameter for hard spheres is the reduced pres-
sure p = P/(ρT). For hard spheres, 1/p plays precisely the same role
as temperature T for a dense liquid,48 and there is no distinction
between isochoric and isobaric paths.

Relaxation times for HS3D, SSV3D, and SSV2D are measured
in units of MC sweeps, which comprise N Monte Carlo trial moves.
For SSP3D, the relaxation time is expressed in units of

√
v0/mσ2,

where m is the mass of the particles.

B. Configurational entropy and point-to-set length
The configurational entropy Sconf is measured from configura-

tions generated with swap Monte Carlo simulations. It is defined
as Sconf = Stot − Sglass, where Stot and Sglass are the total and
glass entropies, respectively.16 Stot and Sglass are computed using
thermodynamic integration schemes, as explained in Ref. 45. In
Appendix A, we describe how to measure Sconf along an isobaric
path using constant pressure simulations for SSP3D as this was not
documented before.

Figure 1 shows the configurational entropy that we use for lat-
ter analysis. The data for Sconf(T) are normalized by the values at
the mode coupling crossover Tmct, whose value is determined by a
power law fit to the dynamic relaxation time data.25 The actual values
are Tmct = 0.0426, 0.104, 0.556, and 0.123 for HS3D, SSV3D, SSP3D,
and SSV2D, respectively.

In order to increase the accuracy of the analysis, we employ
empirical fitting functions. For the three-dimensional models, we

FIG. 1. Configurational entropy data for the four simulated models. The data are
normalized by the values at the mode coupling crossover Tmct. The solid curves
represent the fitting functions defined in the text and Table I.

use a conventional fitting function plus a quadratic correction,
TSconf = A(T−TK)+B(T−TK)2.11,49 For the two-dimensional model,
we use 1/Sconf = A/T + B.43 These fitting functions conveniently
enable us to incorporate Sconf values in between actual data points
and help us determining the exponents. The fitting parameters are
presented in Table I.

We also collect the point-to-set lengthscale ξpts data for
SSV2D43 and HS3D,44 obtained from recently developed computa-
tional methods.50,51 Together with Sconf, the data for ξpts will allow us
to estimate the exponent θ using Eq. (2).

C. Relaxation times
Dynamical information is obtained using either standard

Monte Carlo (for HS3D, SSV3D, SSV2D) or molecular dynamics
(for SSP3D). The equivalence between the two types of dynamics
is well documented.52 Both Monte Carlo and molecular dynam-
ics simulations are run starting from initial configurations that are
obtained using the swap Monte Carlo algorithm. This procedure
allows us to cover about 5 orders of magnitude of relevant slow
dynamics.

The relaxation time τα is measured by the self-intermediate
scattering function in three dimensional models. For the two-
dimensional model, we use the autocorrelation function of the bond-
orientational order parameter, which is insensitive to the long-range
Mermin-Wagner fluctuations that are specific to d = 2.53

The relaxation time τα for HS3D,44 SSV3D,42 SSP3D (new to
this work), and SSV2D43 is shown in Fig. 2. The data are normalized
using an onset temperature To for the emergence of slow dynamics,
determined from the fitting procedure described below, and define
τo = τα(T = To). Clearly, all simulation data show a non-Arrhenius
temperature dependence of the relaxation time, which demonstrates
that our models describe fragile glass-formers.

The swap numerical schemes allow us to prepare equilibrated
configurations at very low temperatures. Because they involve non-
physical particle dynamics, one cannot use them to measure the
relaxation time of the physical dynamics in this low-temperature
regime. Therefore, we need to extrapolate the relaxation time from
the regime where τα can be measured to the experimental regime,
where this is unachievable.

We start by employing the Vogel-Fulcher-Tammann (VFT)
law

log(τα/τ0) ∝ (T − TVFT)−1, (8)

where τ0 and TVFT are fitting parameters. We fitted this function
on our numerical data over the accessible time window, and we

TABLE I. Fitting parameters for the configurational entropy (A, B, and TK), for the
relaxation time (τo, To, and C), and kinetic fragility index m for the simulated models.
Note that Monte Carlo dynamics (HS3D, SSV3D, SSV2D) and molecular dynamics
(SSP3D) have different time units.

Model A B TK log10 τo To C m

HS3D 3.209 −37.33 0.0251 3.89 0.063 22.72 45.5
SSV3D 1.495 −1.92 0.0387 3.02 0.266 3.15 32.0
SSP3D 2.082 −1.74 0.2902 0.41 0.961 16.77 42.4
SSV2D 0.073 0.84 . . . 2.40 1.006 0.25 31.2
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FIG. 2. Relaxation time as a function of inverse temperature for the four simulated models: HS3D (a), SSV3D (b), SSP3D (c), and SSV2D (d). The data are normalized by
τo and To, determined from a parabolic-law fitting. The horizontal dashed line indicates the time scale of the experimental glass transition, τα/τo = 1012. The vertical arrow
indicates the experimental glass transition temperature Tg using the parabolic-raw fitting. Three additional fitting functions are shown.

concluded that it performs very badly when extrapolated at lower
temperatures. We found, for instance, that the swap Monte Carlo
algorithm easily thermalizes at temperatures below the extrapolated
VFT critical temperature TVFT, which invalidates directly its use to
describe numerical data.42 The inability of the VFT law to describe
experimental data over a wide range of temperature was discussed in
detail in Refs. 54 and 55.

It has been found in previous experimental studies that the
parabolic law

τpara
α = τo exp[C(To/T − 1)2] (9)

fits accurately the data over a very large temperature range.56 Its
fitting parameters are τo, C, and To.

In addition to the VFT and parabolic laws, we consider two
other functional forms, shown in Fig. 2. One is a double exponential
equation (MEYGEA) discussed in Refs. 56 and 57,

τα = τ0 exp[K
T

exp[C/T]], (10)

where τ0, K, and C are the fitting parameters. The other one is the
Avramov and Milchev (AM) equation58 given by

τα = τ0 exp[A/Tn], (11)

where τ0, A, and n (real exponent) are the fitting parameters.
All the fitting functions considered in this paper have three free-
fitting parameters which is the minimal number to mathemati-
cally characterize non-Arrhenius behavior. Given the small variation
of the apparent activation energy over the dynamic range stud-
ied experimentally, it is not surprising that several smooth func-
tions of temperature can describe the evolution of log(τα). Figure 2
shows that different fitting functions produce slight variations in
the extrapolated value for Tg . The key issue is therefore to choose
the best fitting function, i.e., the one from which the low temper-
ature data can be inferred accurately from the high temperature
one.

To find the best fitting procedure, we train on experimen-
tal data (see Appendix B). We fit the above four equations to the
data, restricting ourselves to a modest dynamic range, comparable to
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numerical time scales. We then extrapolate to temperatures close to
Tg and compare the extrapolation to the actual data. We find excel-
lent agreement when using the parabolic law for the experimental
data with kinetic fragility indexes similar to our numerical mod-
els, which validates further our procedure. Thus, we empirically find
that fitting the parabolic law to the numerical time window provides
an excellent description of the data close to Tg , as reported previ-
ously.56 This is a purely practical choice, and we make no assump-
tion about the physical mechanism which could lead to such a
law.

By using the fitting parameter τo obtained from the parabolic
law, we define two time windows. First, we define the simulation
window by τα/τo ∈ [100, 105]. The upper bound of this time scale cor-
responds to recent simulation studies with very long time scales.44,59

The experimental window is defined by τα/τo ∈ [103, 1012]. The
lower bound corresponds to a time scale around the mode-coupling
crossover Tmct (τα ≃ 10−7 s60), and the upper bound corresponds to
the time scale at the experimental glass transition Tg (τα ≃ 100 s).
The experimental window is therefore the appropriate regime to test
the predictions made by the RFOT theory. Notice that in this paper,
we try neither to go below Tg nor to examine the fate of supercooled
liquids at even lower temperature.61

For numerical models, we determine the experimental glass
transition temperature Tg as τpara

α (Tg)/τo = 1012. The kinetic
fragility index m is determined by m = ∂ log10 τ

para
α /∂(Tg/T)∣T=Tg .

The fitting parameters and fragility indexes are given in
Table I.

D. Experimental data
We select materials for which high-quality data for the configu-

rational entropy and relaxation time over a broad temperature range
is available in the literature. This allows for a comparison with com-
puter simulations and an accurate determination of the exponent α
in Eq. (4).

We select 2-methyl tetrahydrofuran (2MTHF), ethylbenzene
(ETB), ethanol, glycerol, o-terphenyl (OTP), 1-propanol, propylene
carbonate (PC), salol, toluene, and 3-bromopentane. The configura-
tional entropy data for 2MTHF, ETB, OTP, PC, salol, and toluene
were recently obtained from accurate experiments by Tatsumi, Aso,
and Yamamuro. Some of the data are presented in Ref. 46. The data
for 1-propanol are taken from Ref. 62. In these data for all the above
materials, Sconf is measured by thermodynamic integration of the
heat capacity difference between supercooled liquids and nonequi-
librium glasses. This treatment should be conceptually better than
using the crystal entropy,11 but this is still a rather crude approxima-
tion,63 whose accuracy is expected to be material-dependent.64 For
ethanol,65,66 glycerol,65,67 and 3-bromopentane,27 Sconf is obtained
using the crystal entropy Scry, i.e., Sconf = Sliq − Scry. Notice that we do
not seek to present thermodynamic data for ultrastable glasses pre-
pared below Tg even though we believe that these materials can be
instrumental to test more precisely glass transition theories.68

The relaxation time data are mainly obtained from dielec-
tric measurements, but some data are combined with other
methods, such as viscosity measurements. The correspond-
ing references are 2MTHF,11 ETB,69–71 ethanol,46 glycerol,72–74

OTP,75 1-propanol,11,76,77 PC,73,74,78 salol,79 toluene,75 and
3-bromopentane.80

FIG. 3. (a) Configurational entropy data for 2MTHF,46 ETB,46 ethanol,66 glycerol,67

OTP,81 1-propanol,62 PC,46 salol,81 toluene,46 and 3-bromopentane.27 The solid
curves are quadratic fitting functions as used for the d = 3 numerical models.
(b) Relaxation time data for 2MTHF,11 ETB,69–71 ethanol,82 glycerol,72–74 OTP,75

1-propanol,11,76,77 PC,73,74,78 salol,79 toluene,75 and 3-bromopentane.80 The hor-
izontal dashed line indicates the time scale of the experimental glass transition,
τα = 100 s.

For the experimental data, we set τo = 10−10 s. Therefore,
the simulation and experimental time windows correspond to
τα ∈ [10−10 s, 10−5 s] and τα ∈ [10−7 s, 102 s], respectively. In
particular, Tg corresponds to the standard relaxation time τα = 100 s.

The configurational entropy and relaxation time data for the
materials presented above are gathered in Fig. 3 together with
empirical quadratic fits to the configurational entropy.

III. RESULTS
In this section, we perform a test of Eqs. (1)–(5) using the

experimental and numerical data presented in Sec. II. We first study
Eq. (2) using numerical data for ξpts and Sconf to estimate θ. Then,
we estimate α in Eq. (4) by comparing τα and Sconf using both com-
puter simulations and experiments to investigate the validity of the
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Adam-Gibbs relation in Eq. (1). Finally, the values of θ and α allow
us to discuss that taken by ψ = (d − θ)α, deduced from Eq. (5).

A. The static exponent θ

First, we estimate the exponent θ in Eq. (2) combining indepen-
dent data obtained for Sconf and ξpts.

Figure 4 shows a log-log plot of Sconf vs ξpts for three dimen-
sional polydisperse hard spheres (HS3D) (a) and two dimensional
soft disks (SSV2D) (b). We use the fitted functional form for Sconf
(obtained in Fig. 1), whereas the actual data points are used for ξpts.
We emphasize that while temperature is a running parameter in this
plot, the data point in Fig. 4 correspond to the regime of interest
T < Tmct. Such results have never been achieved as earlier numerical
work were all performed for T > Tmct or only slightly below Tmct.33

Despite the larger temperature range explored in this work, we are
fully aware that the relative variation of ξpts and Sconf remains fairly
modest, which makes the determination of a critical exponent quite
difficult.

FIG. 4. Sconf vs ξpts plot in d = 3 hard spheres (HS3D) (a) and d = 2 soft disks
(SSV2D) (b). The straight lines are power law fits. For HS3D, we show two inde-
pendent estimates of Sconf obtained from the generalized Frenkel-Ladd (GFL)
method and the Franz-Parisi (FP) free energy approach.

For HS3D, we report two estimates for Sconf, obtained from
different schemes. One is a generalized Frenkel-Ladd (GFL)
method,45,83 and the other is the Franz-Parisi (FP) free energy
method proposed earlier.44,84,85 The exponent θ is extracted by fits
to straight lines, whose slope gives θ − d; see Eq. (2). We obtain
θ = 1.35 ± 0.06 for GFL and θ = 1.84 ± 0.09 for FP. These val-
ues are compatible with either the theoretical prediction θ = d/2 by
Kirkpatrick et al.3 or with that of Franz θ = d − 1.86

We obtain θ = 1.12 ± 0.02 for SSV2D. This value is close to
both theoretical predictions, θ = d/2 and θ = d − 1, which coincide
in d = 2, giving θ = 1. Obviously, one cannot discriminate between
the two predictions.

Overall, we find that for d = 3, the value measured for θ con-
forms with the two available predictions, which is an encourag-
ing result from the viewpoint of RFOT theory. Unfortunately, the
obtained values fall in-between the two predictions, which are too
close to be discriminated. We suggest that performing point-to-
set and configurational entropy measurements in d = 4, combining
recently developed tools,45,51,87 would be very useful to conclude on
this point. Indeed, when d = 4, the two predictions yield θ = d/2 = 2
and θ = d − 1 = 3, which are further apart than in d = 3.

B. Breakdown of the Adam-Gibbs relation
and numerical estimation of α

We next examine the validity of Eq. (4) by connecting τα and
Sconf and estimating the exponent α. When α = 1, the Adam-Gibbs
relation in Eq. (1) is recovered.

In Figs. 5(a), 5(c), 5(e), and 5(g), we show conventional Adam-
Gibbs plots where the evolution of log10(τα/τo) is represented as a
function of 1/(Tsconf), where sconf = Sconf/N, for hard spheres (HS3D)
(a), soft spheres along the isochoric path (SSV3D) (c), along the iso-
baric path (SSP3D) (e), and the soft disks (SSV2D) (g). We combine
the dynamic and thermodynamic data described in Sec. II, restricted
to the experimental time window (τα/τo ∈ [103, 1012]). We use the
fitted functional forms for both τα (estimated in Fig. 2) and Sconf
(obtained in Fig. 1), which produces “continuous curves” instead of a
discrete data points. To our knowledge, this is the first time that the
Adam-Gibbs relation is tested for computer models over the time
window where it is actually supposed to apply.

For all three-dimensional models, we find that log10(τα/τo) is
a concave function of 1/Tsconf, whereas it is convex for the two-
dimensional model. If tested over a narrow time window close
to Tmct, an acceptable linear behavior could possibly be observed,
which would suggest the validity of the Adam-Gibbs relation, in
agreement with many earlier findings.12,17–24 The trend that we
report here appears to contrast with recent results obtained in the
Kob-Andersen model, where slight convexity and concavity are,
respectively, observed in d = 323 and d = 2.21 These results were
however obtained in the numerical time window, above Tmct. Our
results demonstrate that when observed over a much broader range
and closer to Tg , the Adam-Gibbs relation is actually not obeyed for
any of the numerical models studied here.

The clear violations of the standard Adam-Gibbs relation that
we find over the experimental time window imply that the exponent
α must deviate from the value α = 1. We varied its value around
unity and used it as a free parameter to obtain generalized Adam-
Gibbs plots, which are shown in Figs. 5(b), 5(d), 5(f), and 5(h) for
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FIG. 5. Left panels: Standard Adam-Gibbs plot for the d = 3 hard spheres (HS3D) (a), d = 3 soft spheres along the isochoric path (SSV3D) (b), the isobaric path (SSP3D) (c),
and d = 2 soft disks (SSV2D) (d). Right panels: Generalized Adam Gibbs plots with the fitted α value for each model for HS3D (b), SSV3D (d), SSP3D (f), and SSV2D (h).
The horizontal dashed lines correspond to the time scale for the experimental glass transition Tg.
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the same numerical models. All plots now show a perfect straight
line, suggesting that the introduction of the parameter α is sufficient
to describe the data. We obtain α = 0.24, 0.49, 0.72, and 1.89 for
HS3D, SSP3D, SSV3D, and SSV2D, respectively, so that α < 1 for the
three dimensional models, whereas α > 1 for the two dimensional
model.

Since the four models we have simulated all display violations of
the Adam-Gibbs relation, we conclude that Eq. (1) does not describe
well the physics of simulated supercooled liquids when analyzed
over the experimental time window. Additional models should be
studied and analyzed before concluding about the possible univer-
sality of the exponent α, but our initial results do not point toward a
constant value. Once more, it would be very valuable to obtain data
in d = 4 to see if a different value for α is found in larger spatial
dimensions.

C. Breakdown of the Adam-Gibbs relation
and experimental estimation of α

Before starting this study, we felt that there was a general
consensus in the community that the Adam-Gibbs relation is
well-obeyed in real materials analyzed near the experimental glass
transition Tg . Thus, the outcome of the computer simulations show-
ing deviations from Eq. (1) appeared as a worrying disagreement
between simulations and experiments.

Therefore, we decided to collect data sets for several molecu-
lar liquids, where high-precision dynamic and thermodynamic data
would be available over both simulation and experimental time
windows in order to perform a direct comparison with computer
models.

We present the results of our data collection in Fig. 6(a) using
again the representation where the standard Adam-Gibbs relation
would yield a straight line. We use the fitted functional form for Sconf
[obtained in Fig. 3(a)], whereas the actual data points are used for τα.
When analyzed over the entire experimental time window, defined
above, we again observe a clear concavity for most materials. The
Adam-Gibbs relation in Eq. (1) is violated over this regime although,
of course, it holds if observed over a restricted time window close to
Tg

11 (almost by definition—the data are continuous!).
As for the simulations, we fit the experimental data using the

exponent α as an additional free parameter. From the experimen-
tal data, we determine two distinct values for α, obtained by fitting
either over the simulation or the experimental time window. The
typical trend that we observe is that α > 1 over the simulation time
window, but α < 1 over the experimental time window. The latter
fits are included in Fig. 6(a), and they describe well the data over the
entire experimental time window. As with the case for the simulation
models, in Fig. 6(b), we also present the generalized Adam-Gibbs
plot with the fitted α value for each material in the experimental
time window. We confirm that the linear behavior is recovered in
this plot.

We notice that the concavity in the Adam-Gibbs plot in the
experimental time window was already reported.28,30 However, the
concavity would be overlooked as it is less pronounced than the
convexity found at much higher temperature, close to Tmct and
above.28 Moreover, Ref. 30 concluded that the observed concav-
ity was attributed to an imprecise estimate of the configurational
entropy. Our results obtained from simulation data with accurate

FIG. 6. (a) Standard Adam-Gibbs plot constructed from experimental data all
except ethanol display a concave behavior. The solid curves correspond to fits
using Eq. (4) using α as a fit parameter over the experimental time window. (b)
Generalized Adam Gibbs plots with the fitted α value for each material. The hor-
izontal dashed lines indicate the time scale of the experimental glass transition,
τα = 100 s, and the lower bound of the experimental time window, τα = 10−7 s.

configurational entropy measurements and recent high-quality
experimental data suggest instead that the observed concavity is a
generic physical phenomenon reflecting the nature of glassy dynam-
ics over the experimental time window.

IV. DISCUSSION
Our central conclusion from both simulations and experiments

considered over a broad time regime τα/τo ∈ [103, 1012] (defined
to be both experimentally accessible and theoretically relevant) is
that the conventional Adam-Gibbs relation in Eq. (1) is not obeyed.
Instead, the general form predicted by RFOT theory in Eq. (4)
describes numerical and experimental data well. This is maybe not so
surprising, from an empirical viewpoint, given that the generalized
relation has one more free fitting parameter.
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We compile all our results for the values of α from simula-
tions (empty points) and experiments (filled points) in Fig. 7. To
organize the data, we use the kinetic fragility index m as the horizon-
tal axis. This is simply a matter of convenience (as a matter of fact,
no strong trend is observed). Note that, somewhat paradoxically, we
do not have values for α in the computer models over the simula-
tion time window because our computational schemes to measure
Sconf only become applicable for low enough temperatures, typically
T ≲ Tmct.45,85

The experimental data in Fig. 7 obtained by considering the
simulation time window are dispersed, α = 0.73–2.34, and tend to be
characterized by rather large values α > 1. By contrast, considering
a broader and physically better justified experimental time window,
data for both simulations and experiments are much less scattered,
α ≃ 0.24–1.28, with a preferred average value α ≃ 0.5–0.6, except for
ethanol.

Before concluding, we make a further caveat regarding the
above analysis of the RFOT theory predictions. In principle, we
could have introduced additional subdominant physical prefactors
into the scaling relations in Eqs. (2) and (3) that could also be tem-
perature dependent quantities. In particular, a surface tension could
enter the relation between Sconf and ξpts,6,88 and an energy scale
could enter the activated scaling relation in Eq. (3). These prefac-
tors would become irrelevant if some asymptotic regime could be
reached with extremely long relaxation times and very small con-
figurational entropy values, but it is understood that experimental
glasses are not in this regime.89 In the absence of strong theoreti-
cal insights into these quantities, we decided to ignore them. They
could of course very well affect the measured values of the reported
exponents. Thus, a better determination of these quantities is an
important research goal,33,90,91 in particular, in the experimental
time window.

We also discuss potential sources of uncertainty in terms of
experimental measurements of τα and Sconf, whose accuracy would

FIG. 7. The measured values of α presented, for convenience, as a function of
the kinetic fragility index m for the simulation (black squares) and experimental
(red circles) time windows for various materials. The errorbars correspond to the
standard error for the fit. The vertical dashed lines connect the two values for each
material. Empty circles correspond to simulation models where α is measured over
the experimental time window only.

affect the determination of the scaling exponent α. Regarding τα, we
note that the dielectric relaxation measurement for ethanol involves
a Debye relaxation process which is distinct from the structural α
relaxation process as recently clarified in an experiment.92 Indeed,
the relaxation time extracted from the main peak that we used in
this paper82 corresponds to the former process in ethanol, whereas
we should instead use the α relaxation process, but it is also found
that the overall temperature dependence of two relaxation processes
are very similar.92 It could be that the unusual behavior in ethanol,
showing α > 1, is related to this issue.

The experimental measurement of Sconf also involves approx-
imations. First, using the excess entropy, Sexe = Sliq − Scry, instead
of Sconf = Sliq − Sglass is an approximation, in general. The valid-
ity of Sglass ≈ Scry has been widely studied,64,93–99 and it seems to be
nonuniversal.64 Typically, Sglass is determined from the heat capac-
ity of the nonequilibrium glass state, and so it still involves some
approximations compared to its theoretical definition.63 Second, the
measurements of Sconf in Ref. 46 were performed by doping the dif-
ferent materials to avoid crystallization. In particular, measurements
for toluene and ETB involve 10 wt. % doping with benzene. There-
fore, mixing effects possibly contribute to the absolute value of Sconf
and to its temperature dependence.100

To summarize our results in terms of numerical values for the
critical exponents introduced within RFOT theory, we observe in
d = 3 that the combination θ ≃ 3/2 and α ≃ 0.5–0.6 works well,
which would then result in ψ falling in the range ψ ≃ 0.75–0.90.
If we use instead the value θ = 2, we would obtain a somewhat
larger value for the dynamic exponent ψ ≃ 1.0–1.2, which agrees
well with earlier indirect analysis.38,39 Both values violate the general
bound ψ ≥θ discussed in the context of spin glasses,101 the equality
ψ = θ found for the random field Ising model,102 and the prediction
ψ = θ = d/2 in Ref. 3. In the absence of stronger theoretical con-
straints, we tentatively conclude that the measured ψ value that we
observe appears somewhat small, i.e., smaller than all known theo-
retical predictions. In d = 2, we get θ ≃ 1.1 and α ≃ 1.9, which in turns
implies that ψ ≃ 1.7, which appears somewhat large, by contrast
with d = 3.

Our conclusion that α < 1 is favored by the data over the
experimental time window sheds some new light on an old debate
in the glass literature.5,56,103,104 Assuming the existence of an ideal
glass transition at equilibrium where Sconf → 0 and τα → ∞, one
is naturally led to the determination of two critical temperatures:
the Kauzmann temperature TK where Sconf vanishes, and the crit-
ical temperature T0 where the relaxation time diverges (not to be
confused with onset temperature To used above). Typically, the lat-
ter is obtained from a Vogel-Fulcher-Tammann fit [T0 = TVFT in
Eq. (8)] to the relaxation time. The possible equality T0 = TK would
provide a strong empirical sign for the existence of an ideal glass
transition underlying glass formation.5 A large data set collected by
Tanaka suggests the existence of systematic differences between the
two temperatures,103 with the tendency that TK > T0, and an appar-
ent correlation with kinetic fragility. In our analysis using Eq. (4)
to describe the data, the connection between thermodynamics and
dynamics becomes automatically satisfied, and thus by construc-
tion thermodynamic and dynamic, singularities necessarily coin-
cide. Assuming that the determination of TK is the most robust
one, we conclude that it is the experimental determination of T0
which should be questioned. In particular, using α < 1 in Eq. (4)
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and assuming an asymptotically linear vanishing of Sconf, one would
predict that log(τα/τ0) ∝ (T − T0)−α, which is distinct from the
standard Vogel-Fulcher-Tamman fit and would automatically pro-
duce the equality TK = T0.

From a broader perspective, we conclude that the Adam-Gibbs
relation, which is an important milestone in the field of glass transi-
tion studies, is generally violated in both computer models and real
materials when tested over a broad, experimentally relevant tem-
perature range. We nevertheless argued that the failure of Eq. (1)
cannot be taken as evidence that thermodynamic theories of the
glass transition are incorrect. The RFOT theory prediction of a con-
nection between statics and dynamics in Eq. (4) is obeyed by all
materials, with exponent values that are reasonable, but remain to
be predicted from first principles. A larger concern, perhaps, is the
apparent lack of universality in the data shown in Fig. 7 which clearly
display variations from one system to another. This may still be
rationalized by invoking the fact that α is obtained from the anal-
ysis of a finite time window where additional preasymptotic effects
and temperature dependent prefactors may influence the reported
results.

Taking an orthogonal perspective, we finally ask the following:
Do our results validate or invalidate some theories of the glass transi-
tion? After all, we just established that a slightly generalized version
of the Adam-Gibbs relation with α ≃ 0.6 describes simulations and
experiments over 9 orders of magnitude in the experimentally rele-
vant regime. This is not a small accomplishment. One can take the
alternative view that the deviations from the canonical exponent val-
ues should be taken as an indirect sign that thermodynamics only
contributes some part of the slowing down, in addition to other
physical factors.105–110 This view is sometimes also invoked to ratio-
nalize the “modest” growth of static correlation lengthscale observed
numerically and experimentally.89,111 Our finding that α < 1 suggests
instead that it is the growth of the relaxation time that is actually
too modest! It is therefore difficult to rationalize how another phys-
ical factor working in addition to the entropy could be invoked to
explain our findings. The most radical view is in fact that thermody-
namics is just a spectator to the glassy dynamics,112 in which case our
findings should be interpreted as purely coincidental since entropy
plays in fact no role. We have no strong argument to oppose this
view, which remains perfectly admissible.
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APPENDIX A: CONFIGURATIONAL ENTROPY ALONG
AN ISOBARIC PATH

We wish to measure the configurational entropy Sconf(T, P)
along an isobaric (constant pressure) path. It is computed as
Sconf(T, P) = Stot(T, P) − Sglass(T, P), where Stot(T, P) and Sglass(T, P)
are the total and glass entropies at the temperature T and pressure P.
We explain how to get Sconf(T, P) from NPT simulation trajectories.

1. Notations
We consider the Helmholtz free energy −βF(T, V) = lnZ(T, V),

where β = 1/T and Z(T, V) is the partition function of the NVT
ensemble. We also consider the Gibbs free energy −βG(T, P)
= lnY(T, P), where Y(T, P) is the partition function of the NPT
ensemble, given by

Y(T,P) = ∫
∞

0
dVe−β(PV+F(T,V)). (A1)

We introduce the probability distribution of the volume V for a
given T and P,

ρ(V ∣T,P) = e−β(PV+F(T,V))

Y(T,P) . (A2)

In equilibrium, ρ(V|T, P) is given by the Gaussian distribution

ρ(V ∣T,P) = 1√
2πσ2

V

exp[−(V − V∗)
2

2σ2
V

], (A3)

where V∗ and σ2
V are the mean and variance of the volume, respec-

tively. We define ⟨(⋯)⟩T,P = ∫ ∞0 dVρ(V ∣T,P)(⋯). Using this
average, we can write V∗ = ⟨V⟩T ,P and σ2

V = ⟨(V − V∗)2⟩T,P.

2. Total entropy
The total entropy Stot(T, P) is obtained by a thermodynamic

integration of the isobaric heat capacity from a reference tempera-
ture Tref = 1/βref to the target temperature T = 1/β,

Stot(T,P) = Stot(Tref,P) −
Nd
2
(lnβ − lnβref) + βU∗(T,P)

−βrefU∗(Tref,P) − ∫
β

βref

dβ′U∗(T′,P)

+P(βV∗(T,P) − βrefV∗(Tref,P))

−P∫
β

βref

dβ′V∗(T′,P), (A4)

where U∗(T, P) is the mean potential energy and V∗(T, P) is
the mean volume; U∗(T, P) and V∗(T, P) are measured by con-
stant pressure simulations. The entropy at the reference state is
obtained by Stot(Tref,P) = ⟨Stot(Tref,V)⟩T,P using the NVT ensem-
ble scheme.44 This treatment for the reference state will be justified
below.

3. Glass entropy
To get the glass entropy, we use the generalized Frenkel-Ladd

method which relies on the NVT ensemble.45 In general, one can
smoothly connect NVT and NPT ensembles in terms of mean val-
ues. For example, thermodynamics guarantees that S(T, P) = S(T,
⟨V⟩T ,P). However, special attention should be paid if one uses
the NVT ensemble scheme with trajectories generated by the NPT
ensemble for finite system size.113 A related issue is discussed in
Ref. 114. Indeed, what we can compute is ⟨S(T, V)⟩T ,P. In general,

S(T,P) = ⟨S(T,V)⟩T,P − ⟨ln ρ(V ∣T,P)⟩T,P. (A5)
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FIG. 8. Extrapolation from simulation time scale (τα ≤ 10−5 s) to experimental time scale for 1-propanol (a), propylene glycol (b), glycerol (c), OTP (d), and PC (e), whose
kinetic fragility is equal to m = 35, 48, 53, 78, and 104, respectively. The values of m for 1-propanol, propylene glycol, and glycerol are comparable to the simulation models
employed in this paper.
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Therefore, we need to consider the second term in Eq. (A5) as
a correction term. We can evaluate this term with Eq. (A3),

− 1
N
⟨ln ρ(V ∣T,P)⟩T,P =

1
N

ln
√

2πeσ2
V . (A6)

Since σ2
V ∼ N, this term vanishes in the thermodynamic limit,

as expected. Indeed, for N = 1500 systems, we get negligible
values, 1

N ln
√

2πeσ2
V ≃ 0.0026 and 0.0013 at Tref = 7.0 and

T = 0.37, respectively. These values are small compared to the
absolute value of Sconf/N ≃ 0.36–0.80. Thus, we can safely use
S(T, P) = ⟨S(T, V)⟩T ,P. Especially, we use the following equation,
Sglass(T,P) = ⟨Sglass(T,V)⟩T,P.

APPENDIX B: EXTRAPOLATION OF RELAXATION
TIMES TOWARD T g

Here, we test the validity of the extrapolation of relaxation time
from the numerical to the experimental time scale using various
fitting functions. We employ 1-propanol, propylene glycol, glyc-
erol, OTP, and PC. Among these, 1-propanol, propylene glycol,
and glycerol have kinetic fragility indexes similar to the simulation
models.

Figure 8 shows various fits of the data performed over the simu-
lation time window, τα ≤ 10−5 s, and then extrapolated to lower tem-
peratures down to Tg , where τα = 100 s. In the cases for 1-propanol,
propylene glycol, glycerol, and OTP shown in Fig. 8, the parabolic
law is the best functional form that predicts the actual data well over
the experimental time window. All other functional forms, when fit-
ted over the simulation time window, tend to deviate from the actual
data at low temperatures. For the most fragile material, PC underes-
timates the actual data when the parabolic law is applied, whereas
MYGEA and AM predict the data better. Notice that the uncertainty
on the determination of Tg using the numerical time window and a
parabolic fit is very small for the systems whose fragility is compara-
ble to typical simulations models. This is the strategy we have used
in previous numerical studies.42–44
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